摘要
In the present paper, a micromechanically based damage model for microcrack-weakened solids is developed. The concept of the domain of microcrack growth (DMG) is defined and used to describe the damage state and the anisotropic properties of brittle materials. After choosing an appropriate fracture criterion of microcrack, we obtain the analytical expression of DMG under a monotonically in- creasing proportional plane stress. Under a complex loading path, the evolution equation of DMG and the overall effective compliance tensor of damaged materials are given.
In the present paper, a micromechanically based damage model for microcrack-weakened solids is developed. The concept of the domain of microcrack growth (DMG) is defined and used to describe the damage state and the anisotropic properties of brittle materials. After choosing an appropriate fracture criterion of microcrack, we obtain the analytical expression of DMG under a monotonically in- creasing proportional plane stress. Under a complex loading path, the evolution equation of DMG and the overall effective compliance tensor of damaged materials are given.
基金
The project supported by National Natural Science Foundation of China