期刊文献+

gr(D_n) and gr(ε_p) Are Not Noetherian Rings With Pure Dimension

gr(D_n) and gr(ε_p) Are Not Noetherian Rings With Pure Dimension
原文传递
导出
摘要 A commutative Noetherian ring R is called a regular Noetherian ring with pure dimension n, if for any maximal ideal m of R, gl.dimR_m=n, where R_m is the localization of R at the maximal ideal m. It is well known that if R is a finitely generated commutative algebra over some field, R is integral and gl. dimR【∞, then R is a regular Noetherian ring with pure dimension. Let D(V) be the ring of differential operators over the non-singular n-dimensional irreducible algebraic variety V. Then gr(D(V)) is a
作者 吴泉水
出处 《Chinese Science Bulletin》 SCIE EI CAS 1993年第13期1060-1062,共3页
基金 the National Natural Science Foundation of China.
关键词 RINGS of DIFFERENTIAL OPERATORS RINGS of the germs of microlocal DIFFERENTIAL OPERATORS PURE dimension. rings of differential operators, rings of the germs of microlocal differential operators, pure dimension.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部