摘要
本文在 A 集范畴 Ens-A 中引入局部化的概念.证明了如果 A 集 M 是内射(右投射、平坦),则其局部化后得到 S^(-1) A 集 S^(-1) M 也是内射(右投射、平坦),并由此推出如果交换幺半群 A 是完全内射(完全投射,绝对平坦)的.则半群局部化 S^(-1) A 亦分别具有上述性质.同时本文证明了对于 A 集 M 和 N,及 A 的子半群 S(S 满足条件:■_(S1,S2) ∈S,存在■ y ∈A,使得 ys_1=ys_2 ∈S)有 S^(-1) A 同构:S^(-1) (M■ N)≌S^(-1) M■S^(-1) N.
In this paper we introduce the concept of localization in the category Ens-A of A-sets and prove that if an A-
set M is right injective(right projective,flat),then the localization of M is a right injective(right projective,flat)
S^(-1) A-set;and then we prove that if a monoid A is completely injective(projective),absolutely flat,then so is the
localization S^(-1) A.At the end of the paper we discusse the relationship between the localization and tensor product
of A-sets.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1993年第3期46-52,共7页
Journal of Sichuan Normal University(Natural Science)
关键词
局部化
张量积
(完全)内射
(完全)投射
(绝对)平坦
localization
tensor product
(completely)injective
(completely)projective
(absolutely)flat