期刊文献+

Neural network processing for adaptive line enhancement 被引量:1

Neural network processing for adaptive line enhancement
原文传递
导出
摘要 This paper describes the inverstigation devoted to establish suitable weights in a feed-forward neural network realizing the narrow-band filtering map in the case of adaptive line enhanccment(ALE) by the utility of the optimum common learning rate back propagation (OCLR BP) algorithm. It is found that a feed-forward network with 64 linear input and output neurons, and 8 odd sigmoid neurons in the hidden layer, i.e. an (64→8→64) architecture, could establish the specific input-output function in the case of relatively low signal-to-noise radio. Only is an input signal consisting of mixed periodic and broad-band components available to the network system. After learning, both the 'fanning-in-connection patterns', each of which consists of weights fanning into a hidden-neuron from all the outputs of input-neurons, and the 'fanning-out-connection patterns', each of which consists of weights fanning out from a hidden-neuron to all the inputs of output-neurons, are tuned to the periodic signals. The nonlinear map formed by this neural network provided substantial improvement in performance over that formed by an Adaline-ALE with same frequency resolution. This paper describes the inverstigation devoted to establish suitable weights in a feed-forward neural network realizing the narrow-band filtering map in the case of adaptive line enhanccment(ALE) by the utility of the optimum common learning rate back propagation (OCLR BP) algorithm. It is found that a feed-forward network with 64 linear input and output neurons, and 8 odd sigmoid neurons in the hidden layer, i.e. an (64→8→64) architecture, could establish the specific input-output function in the case of relatively low signal-to-noise radio. Only is an input signal consisting of mixed periodic and broad-band components available to the network system. After learning, both the 'fanning-in-connection patterns', each of which consists of weights fanning into a hidden-neuron from all the outputs of input-neurons, and the 'fanning-out-connection patterns', each of which consists of weights fanning out from a hidden-neuron to all the inputs of output-neurons, are tuned to the periodic signals. The nonlinear map formed by this neural network provided substantial improvement in performance over that formed by an Adaline-ALE with same frequency resolution.
出处 《Chinese Journal of Acoustics》 1993年第4期297-301,共5页 声学学报(英文版)
关键词 Neural networks BACK-PROPAGATION Adaptive signal processing Narrow-band signalfiltcring Neural networks Back-propagation Adaptive signal processing Narrow-band signalfiltcring
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部