摘要
在文献[1]的基础上,利用状态空间方法建立了引信安全系统解除保险过程的数学模型:常微分方程组和泛函微分方程组模型。定义了组成安全系统的保险要素之间的独立性和解除保险过程的时滞性。描述了安全系统中各保险要素工作状态之间的相互制约关系和解除保险时间延滞对解除保险过程的影响。并通过3个示例对不同解除保险过程给出了数学描述。
On the basis of a previous paper by the same authors and making use of the method of state space, the present paper constructs the mathematical models—the systems of ordinary differential and functional differential equations about the fuze safety system's arming process, defines the independence among the safety elements in the safety system and the retardation of the arming process, describes the restrictive correlation of the safety elements and the effect of time delay on the arming process, and presents three examples of mathematical description of the arming process.
出处
《兵工学报》
EI
CAS
CSCD
北大核心
1993年第S1期36-42,共7页
Acta Armamentarii