摘要
本文讨论了Ferenc·Szasz提出的问题(3)何种P_2-环的所有子环还是P_2-环.证明了如下结论:强正则环,P_1-环和具有唯一自反逆的正则环是P_2-环.而且若它们满足条件:1.P_2-环A的子环均是A的理想.或2.P_2-环A的子环N的理想均是A的理想.那么它们的所有子环还是P_2-环.
In this paper, we discuss the problem (3) that was asked by Ferenc Szasz at Math Japoinace in 1972, we obtain the following results.
When A is P1-ring (strongly regular ring, regular ring that has unique reflesive inverse) all subrings of A-ring are again P2-ring it A-ring possess following conditations.
1. subrings of A-ring are ideas of A-ring, or
2. ideas of subrings of A-ring are ideas of A-ring.
出处
《吉林师范大学学报(自然科学版)》
1991年第3期8-10,共3页
Journal of Jilin Normal University:Natural Science Edition