期刊文献+

ON THE SECTIONAL CURVATURE OF A RIEMANNIAN MANIFOLD

ON THE SECTIONAL CURVATURE OF A RIEMANNIAN MANIFOLD
原文传递
导出
摘要 In this paper the author establishes the following1.If M^n(n≥3)is a connected Riemannian manifold,then the sectional curvatureK(p),where p is any plane in T^x(M),is a function of at most n(n-1)/2 variables.Moreprecisely,K(p)depends on at most n(n-1)/2 parameters of group SO(n).2.Lot M^n(n≥3)be a connected Riemannian manifold.If there exists a point x ∈ Msuch that the sectional curvature K(p)is independent of the plane p∈T_x(M),then M is aspace of constant curvature.This latter improves a well-known theorem of F.Schur. In this paper the author establishes the following 1.If M^n(n≥3)is a connected Riemannian manifold,then the sectional curvature K(p),where p is any plane in T^x(M),is a function of at most n(n-1)/2 variables.More precisely,K(p)depends on at most n(n-1)/2 parameters of group SO(n). 2.Lot M^n(n≥3)be a connected Riemannian manifold.If there exists a point x ∈ M such that the sectional curvature K(p)is independent of the plane p∈T_x(M),then M is a space of constant curvature. This latter improves a well-known theorem of F.Schur.
作者 白正国
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1990年第1期70-73,共4页 数学年刊(B辑英文版)
基金 Projects Supported by the Natural Science Funds of china.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部