摘要
在非同分布场合下,拓扑群(半群)上随机变量卷积序列极限存在的充要条件是一个至今尚未得到解决的问题,但是在有限群时[1]得到一些重要结果,本文的主要目的是将[1]中的定理1,定理2推广到一类有限半群上。
Let S be a fimite semigroup with idendity e, H be asubgroup of S, e∈H {μn }n be a seguence of Paobability weasures on S Wj be Haar measure on H. then We have:In Order that {μn}n>1 strang c omposidion converge to WH it ishecessary ana sufficient that μi (H) 0 beginning with some J0end the seguence { σa } n 1 strong composition converge to Wi, where for every Borel set BThis is an extension of Thl and Thz in [1]
出处
《湖北师范学院学报(自然科学版)》
1990年第1期13-20,共8页
Journal of Hubei Normal University(Natural Science)
关键词
拓扑半群
组合收敛
HAAR测度
Topological semigroap. composition convergence. Haaf measure.