期刊文献+

ON THE LORENTZ CONJECTURES UNDER THE L_1-NORM

ON THE LORENTZ CONJECTURES UNDER THE L_1-NORM
原文传递
导出
摘要 Let f (x) ∈ C [-1, 1], p<sub>n</sub><sup>*</sup> (x) be the best approximation polynomial of degree n tof (x). G. Iorentz conjectured that if for all n, p<sub>2n</sub><sup>*</sup> (x) = p<sub>2n+1</sub><sup>*</sup> (x), then f is even; and ifp<sub>2n+1</sub><sup>*</sup> (x) = p<sub>2n+2</sub><sup>*</sup> (x), p<sub>o</sub><sup>*</sup> (z) = 0, then f is odd. In this paper, it is proved that, under the L<sub>1</sub>-norm, the Lorentz conjecture is validconditionally, i. e. if (i) (1-x<sup>2</sup>) f (x) can be extended to an absolutely convergentTehebyshev sories; (ii) for every n, f (x) - p<sub>2n+1</sub><sup>*</sup> (x) has exactly 2n + 2 zeros (or, in thearcond situation, f (x) - p<sub>2n+2</sub><sup>*</sup> (x) has exaetly 2n+3 zeros), then Lorentz conjecture isvalid. Let f (x) ∈ C [-1, 1], p_n~* (x) be the best approximation polynomial of degree n to f (x). G. Iorentz conjectured that if for all n, p_(2n)~* (x) = p_(2n+1)~* (x), then f is even; and if p_(2n+1)~* (x) = p_(2n+2)~* (x), p_o~* (z) = 0, then f is odd. In this paper, it is proved that, under the L_1-norm, the Lorentz conjecture is valid conditionally, i. e. if (i) (1-x^2) f (x) can be extended to an absolutely convergent Tehebyshev sories; (ii) for every n, f (x) - p_(2n+1)~* (x) has exactly 2n + 2 zeros (or, in the arcond situation, f (x) - p_(2n+2)~* (x) has exaetly 2n+3 zeros), then Lorentz conjecture is valid.
作者 叶懋冬
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1990年第3期359-362,共4页 数学年刊(B辑英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部