摘要
本文根据第二类拉格朗日方程对全悬挂多点啮合柔性传动装置建立了完整的运动微分方程,其中不仅考虑了悬挂齿轮箱牵连转动的影响及作用于电动机定子上的电磁力矩,还计及了耗散力的广义力.文中使用能量法推导了扭力杆缓冲装置的等效扭转刚度,用广义雅可比法求解了系统的广义特征值问题,并通过计算验证了 12自由度和3自由度两种动力学模型的正确性和一致性.
A complete differential motion equation for a flexible drive with fully-mounted multi-point meshing has been developed based on a Lagrange equation of the second kind. Not only the influence of implicative transportation rotation of the mounted gear box and the electromagnetic torque acting on the stator of the electric motor, but also the generalized force of the dissipative force have been taken into consideration. The equivalent torsional stiffness of torsion bar buffer assembly is derived by the energy method and the generalized eigenvalue of the system is found by the Generalized Jacobi Method. The correctness and consistency of the two dynamic models for 12 and 3 degrees-of-freedom have been verified by numerical calculation respectively.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1990年第S3期173-180,共8页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金
关键词
全悬挂多点啮合柔性传动
动力学模型
第二类拉格朗日方程
广义特征值
固有频率
固有振型
Flexible drivew ith fully-mounted multi-point meshing
Dynamic model
Lagrange equation of the second kind
Generalized eigenvalue
Natural frequency
Natural modes