摘要
In this paper we construct a completely exponentially fitted finite difference scheme for the boundary value problem of differential equation with turning points, extending Miller's method[1] and simplifying the method of the proof. We prove the first order uniform convergence of the scheme. The numerical results show that it is better than 11' in's[2] scheme.
In this paper we construct a completely exponentially fitted finite difference scheme for the boundary value problem of differential equation with turning points, extending Miller's method[1] and simplifying the method of the proof. We prove the first order uniform convergence of the scheme. The numerical results show that it is better than 11' in's[2] scheme.