期刊文献+

AN EXTENSION OF LEVI-CIVITA’S THEOREM TO NONHOLONOMIC DYNAMICAL SYSTEMS

AN EXTENSION OF LEVI-CIVITA’S THEOREM TO NONHOLONOMIC DYNAMICAL SYSTEMS
下载PDF
导出
摘要 This paper uses Poincaré formalism to extend the Levi-Civita theorem to cope with nonholonomic sys- tems admitting certain invariant relations whose equations of motion involve constraint multipliers.Sufficient condi- tions allowing such extension are obtained and,as an application of the theory a generalization of Routh's motion is presented. This paper uses Poincaré formalism to extend the Levi-Civita theorem to cope with nonholonomic sys- tems admitting certain invariant relations whose equations of motion involve constraint multipliers.Sufficient condi- tions allowing such extension are obtained and,as an application of the theory a generalization of Routh's motion is presented.
作者 Naseer Ahmed
机构地区 Mathematics Department
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1990年第2期169-179,共11页 力学学报(英文版)
关键词 nonholonomic dynamical systems Levi-Civita's theorem Poincaré formalism nonholonomic dynamical systems Levi-Civita's theorem Poincaré formalism
  • 相关文献

参考文献11

  • 1Q. K. Ghori,Naseer Ahmed.Levi-Civita’s theorem for dynamical equations with constraint multipliers[J]. Archive for Rational Mechanics and Analysis . 1984 (1)
  • 2Q. K. Ghori,M. Hussain.Generalisation of the Hamilton-Jacobi theorem[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP . 1974 (4)
  • 3Equations of motion in P oincaré-Cetaev variabtes with constraint multipliers. Bulletin of the Australian Mathematical Society . 1977
  • 4Capodanno,P.Sur deux extensions d’un théorème de Levi-Civita aux systèmes gyroscopiques et quelques applications. Journal de Mécanique . 1978
  • 5Capodanno,P.Extension of the Levi-Cività theorem to nonholonomic systems. Prikl. Mat. Meh . 1981
  • 6Dovletov,M.,Sulgin,M. F.Particular solutions of dynamic equations with impulsive factors of Suslov, G.K. Taskent. Gos. Univ. Naucn. Vyp . 1971
  • 7Ghori,Q. K.Chaplygin’s theorem of reducing multipliers in Poincaré-Chetaev variables. Z Angew. Math., Mech . 1976
  • 8Levi-Civita,T.,Amaldi,U. Lezioni de meccanica razionale . 1952
  • 9Pignedoli,A.Ricerca di soluzioni particolari di un sistema anolonomo in base alia esistenza di integrali o relazioni invarianti. Atti Sem. Mat. Fis. Univ. Modena . 1947
  • 10Suslov G K.Theoretical Mechanics (in Russian). . 1946

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部