摘要
An improved model for numerically predicting nonlinear wave forces exerted on an offshore structure is pro- posed.In a previous work[9],the authors presented a model for the same purpose with an open boundary condi- tion imposed,where the wave celerity has been defined constant.Generally,the value of wave celerity is time-de- pendent and varying with spatial location.With the present model the wave celerity is evaluated by an upwind dif- ference scheme,which enables the method to be extended to conditions of variable finite water depth,where the value of wave celerity varies with time as the wave approaches the offshore structure.The finite difference method incorporated with the time-stepping technique in time domain developed here makes the numerical evolution effec- tive and stable.Computational examples on interactions between a surface-piercing vertical cylinder and a solitary wave or a cnoidal wave train demonstrates the validity of this program.
An improved model for numerically predicting nonlinear wave forces exerted on an offshore structure is pro- posed.In a previous work[9],the authors presented a model for the same purpose with an open boundary condi- tion imposed,where the wave celerity has been defined constant.Generally,the value of wave celerity is time-de- pendent and varying with spatial location.With the present model the wave celerity is evaluated by an upwind dif- ference scheme,which enables the method to be extended to conditions of variable finite water depth,where the value of wave celerity varies with time as the wave approaches the offshore structure.The finite difference method incorporated with the time-stepping technique in time domain developed here makes the numerical evolution effec- tive and stable.Computational examples on interactions between a surface-piercing vertical cylinder and a solitary wave or a cnoidal wave train demonstrates the validity of this program.
基金
China National Sicence Foundation with Grant No.91870003