期刊文献+

利用AUTO软件分析扬声器薄壳的分岔特性

A study on the bifurcation of loudspeaker shell by the software AUTO
下载PDF
导出
摘要 采用AUTO软件分析了扬声器薄壳非线性振动方程的分岔特性及稳定性,所分析的系统为扬声器轴对称模态处于共振且轴对称模态和非轴对称模态处于2∶1内共振时的情形.得到了系统的频率响应、驱动力响应曲线及分岔集,结果与已有实验结果基本吻合.表明扬声器的分谐波源自轴对称模态和非轴对称模态的耦合作用. The bifurcation and the stability of the nonlinear vibration of loudspeaker shell were analyzed by the software AUTO,with the axisymmetric mode and an asymmetric mode of the loudspeaker shell in the internal resonances of 2 ∶1 and the axisymmetric mode driven resonantly.The bifurcation sets,frequency response and driving force response were presented.The bifurcation sets should in agreement with exist experiment results.The results indicated that the subharmonic of louderspeakers was due to the coupling between the axisymmetric and asymmetric modes.
出处 《浙江师范大学学报(自然科学版)》 CAS 2011年第4期409-413,共5页 Journal of Zhejiang Normal University:Natural Sciences
基金 浙江省自然科学基金资助项目(100039)
关键词 扬声器 非线性振动 AUTO软件 分岔 loudspeaker nonlinear vibration software AUTO bifurcation
  • 相关文献

参考文献7

  • 1Pedersen P O. Sub harmonics in forced oscillations in dissipative systems part I [ J ]. Journal of Acoustical Society of American, 1935,6 (4) : 227 -238.
  • 2Cunningham W J. The growth of subharmonic oscillations[J]. Journal of Acoustical Society of American, 1951,23(4) :418-422.
  • 3Wei Rongjue ,Tao Qingtian, Ni Wansun. Bifurcation and chaos of direct radiation loudspeaker[ J 1. Chinese Phys Lett, 1986,3 ( 10 ) :469472.
  • 4Zhang Zhiliang,Tao Qingtian. Experimental study of non-linear vibrations in a loudspeaker cone[ J]. J Sound and Vibration ,2001,248 ( 1 ) : 1- 8.
  • 5孟庆照,李小菊,张志良.闭合旋转薄壳的非线性模态方程[J].浙江师范大学学报(自然科学版),2010,33(1):63-69. 被引量:2
  • 6Doedel E J, Champneys A R, Dereole F, et al. Auto-O7P: Continuation and Bifurcation Software for Ordinary Differential Equations (with Hom- cont ), User' Guide [ EB/OL ]. [ 2008 -11-20 ]. http://indy, cs. coneordia, ca/auto.
  • 7张志良.扬声器锥壳的全频段振动通解[J].声学学报,2010,35(5):554-561. 被引量:4

二级参考文献21

  • 1张志良,程昌钧.旋转薄壳转点频段的轴对称振动解[J].固体力学学报,2006,27(2):135-140. 被引量:7
  • 2Radwan H, Genin J. Non-linear mode equations for thin elastic shells[ J ]. Non-Linear Mechanics, 1975,10 : 15-29.
  • 3Amabili M, Pellicano F, Paidoussis M P. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, Part II:largeamplitude vibrations without flow [ J ]. J Sound Vib, 1999,228 ( 5 ) : 1103-1124.
  • 4Amabili M. A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells : Lagrangian approach [ J ]. J Sound Vib, 2003,264 (5) :1091-1125.
  • 5Maewal A. Finite element analysis of steady nonlinear harmonic oscillations of axisymmetric shells [ J ]. Computer methods in applied mechanics and engineering, 1986,58( 1 ) :37-50.
  • 6Kubenko V D, Kovalchuk P S, Kruk L A. Non-linear interaction of bending deformations of free-oscillating cylindrical shells[ J ]. J Sound Vib, 2003,265 ( 2 ) : 245-268.
  • 7Brown W N Jr. Theory of conical sound radiators. J Acoust. Soc. Am., 1941; 13(1): 20--22.
  • 8Bordoni P G. The conical sound source. J. Acoust. Soc Am., 1945; 28(2): 123--126.
  • 9Nimura T, Matsui E, Shibayama K et al. Study on the cone type dynamic loudspeakers (in Japanese). J. Acoust. Soc. Jpn.. 1951: 7(1): 16-28.
  • 10Frankort F J M. Vibration and sound radiation of loudspeaker cones. N. V. Philips' Gloeilampenfabrieken, Eindhoven: 1975.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部