期刊文献+

Kagome结构空芯光子晶体光纤纤芯参数对传输特性的影响 被引量:3

Changes of propagation characteristics with core parameters in kagome-structured hollow-core photonic crystal fibers
下载PDF
导出
摘要 应用全矢量有限元方法,研究大间距Kagome结构空芯光子晶体光纤中纤芯的大小、形状与壁厚对光纤传输损耗谱的影响。结果表明,某些纤芯尺寸会造成包层中的结构缺陷,易使纤芯基模、表面模及包层模之间发生能量耦合,产生较大损耗。而纤芯形状与壁厚的改变会引起表面模式的变化,从而影响发生在基模与表面模之间反向耦合的位置和强度,使光纤传输频带变窄和损耗变大。据此,提出Kagome结构光纤的纤芯设计思路,即纤芯的大小应使包层保持完整的微结构,纤芯形状应与包层中的单元微结构相楔合,纤芯壁厚应与包层中玻璃支柱的宽度相同。 Based on all-vector finite element method,general features of the loss spectrum of large-pitch kagome lattice hollow-core photonic crystal fiber(HC-PCF) are exhibited by investigating the effects of the core size,core shape and core-cladding boundary width on the guidance properties of the fiber.The numerical simulations show that the operational bandwidth of the fiber is drastically affected by improper core design parameters which cause the interaction among the fundamental core modes,surface modes and cladding modes.Therefore,the design of large-pitch kagome lattice HC-PCF with low loss and broad bandwidth should satisfy these conditions: the core size maintains the complete micro-structures of the cladding,the core shape matches the micro-structure of the cladding cells,and the core-cladding boundary width is equal to the glass struts width of the cladding.
机构地区 宁波大学理学院
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2011年第10期2578-2582,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(60977048) 宁波市国际科技合作计划项目(2010D10018) 宁波大学校科研基金项目(XY0700012)
关键词 Kagome结构大间距空芯光子晶体光纤 全矢量有限元法 光纤模式 反向耦合 large-pitch kagome lattice hollow-core photonic crystal fibers all-vector finite element method fiber mode anti-crossing
  • 相关文献

参考文献11

  • 1Couny F, Benabid F, Light P S. Large-pitch kagome-structured hollow-core photonie crystal fiber[J]. Opt Lett, 2006, 31(24) :3574 3576.
  • 2Pearce G J, Wiederhecker G S, Poultonl C G, et al. Models for guidance in kagome-structured hollow-core photonic crystal fibres[J]. Opt Express, 2007, 15(20):12680-12685.
  • 3Couny F, Roberts P J, Birks T A, et al. Square-lattice large-pitch hollow-core photonic crystal fiber[J]. Optical Society of America, 2008, 16(25) : 20626-20636.
  • 4Russell P St J. Photonic crystal fiber[J]. Journal of Lightwave Technology, 2006, 24(12) :4729-4749.
  • 5Hedley T D, Bird D M, Benabid F, et al. Modelling of a novel hollow-core photonic crystal fibre[C]//Quantum Electronics and Laser Science Conference. 2003.
  • 6Argyros A, Pla J. Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared[J]. Opt Express, 2007, 15 (12) :7713-7719.
  • 7Gerome F, Jamier R, Auguste J L, et al. Simplified hollow-core photonic crystal fiber[J]. Opt Lett, 2010, 35(8) : 1157- 1159.
  • 8Rodrigo A C, Broderick N G. Optimizing the usable bandwidth and loss through core design in realistic hollow--core photonic bandgap fibres [J]. OptE:rpress, 2006, 14(17) :7974 -7985.
  • 9Saitoh K, Mortensen N A, Koshiba M. Air-core photonic band-gap fibers[J]. Opt Express, 2004, 12(3) :394 400.
  • 10Amezcua-Correa R, Gerome F, Leon Saval S G. et al. Control of surface modes in low loss hollow core photonic bandgap fibers[J]. Opt Express, 2008, 16(2) :1142-1149.

同被引文献22

  • 1王清月,胡明列,柴路.光子晶体光纤非线性光学研究新进展[J].中国激光,2006,33(1):57-66. 被引量:73
  • 2Furusawa K,Malinowski A. Price K H Vet al. Cladding Pumped Ytterbium-Dopedfiber Laser with Holey Inner and Outer Cladding [J]. Optics Express,2001,9(13) :714--720.
  • 3Morioka T, Takara H, Kawanishi S, et al. Polarisation-independent all-optical demultiplexing up to 200 Gbit/s using four-wave mixing in a semiconductor laser amplifier[J]. Electron Lett, 1996, 32:906-907.
  • 4Cundiff S T, Ye J, Hall J L. Optical frequency synthesis based on mode-locked lasers[J]. RevSci Instrum, 2001, 72:3749-3771.
  • 5Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288:635-639.
  • 6Hartl I, Li X D, Chudoba C, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica micro- structure optical fiber[J]. Opt Lett, 2001, 26:608-610.
  • 7Serebryannikov E E, Goulielmakis E, Zheltikov A M. Generation of supercontinuum compressible to single-cycle pulse widths in an ionizing gas[J]. New Journal of Physics, 2009 :093001.
  • 8Boni L D, Toro C, Herndndez F E. Pump polarization-state preservation of picosecond generated white-light supercontinuum[J]. Opt Ex press, 2008, 16(2) :957-964.
  • 9Antoine Proulx, Jean-Michel M6nard, Nicolas Ho, et al. Intensity and polarization dependences of the supercontinuum generation in bire fringent and highly nonlinear microstructured fibers[J]. Opt Express, 2003, 11 (25) : 3338-3345.
  • 10赵振宇,段开椋,王建明,赵卫,王屹山.光子晶体光纤放大器增益特性的实验研究[J].强激光与粒子束,2008,20(12):1975-1978. 被引量:2

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部