摘要
为了能够更好的保留图像的有用信息,更精确的去除图像的噪声,提出了基于超小波多阈值的自适应图像去噪方法.该方法先通过超小波变换对图像进行多尺度,多方向分析,然后采用WindowShrink和BayesShrink相结合的去噪方法,充分利用原始图像和噪声的信息实现了图像的降噪处理.仿真结果表明,文中方法无论峰值信噪比还是去噪图像的效果都优于小波变换.
In order to better conserve useful information in original images and to more accurately remove noise from the image,the paper presents a new image denoising method.It combined the contourlet transform approach with BayesShrink thresholds and WindowShrink thresholds estimating methods.The new image denoise method realizes multi-scale geometric analysis methods that can better approximate nonlinear high dimension function.The simulation results show that the new method is better than the wavelet method and the single threshold estimate method.
出处
《西安工业大学学报》
CAS
2011年第1期84-88,共5页
Journal of Xi’an Technological University
关键词
超小波变换
多尺度分析
图像去噪
多阈值估计
自适应阈值
contourlet transform
multi-scale geometric transform
images denoise
multiple-threshold estimate
adaptive threshold