期刊文献+

CUSP磁场对直拉硅单晶氧浓度分布影响的数值模拟 被引量:9

Numerical Simulation of CUSP Magnetic Field on Oxygen Concentration Distribution in CZ-Si Crystal Growth
原文传递
导出
摘要 利用有限元分析软件对Φ300 mm直拉硅单晶生长过程进行模拟,分析了保持CUSP磁场对称面与熔体坩埚界面交点处的径向分量不变的情况下,硅单晶中氧浓度分别随CUSP磁场通电线圈距离、通电线圈半径的变化规律。随着通电线圈距离和半径的增大,晶体熔体固液界面氧浓度均逐渐降低。随着通电线圈距离和半径的增大,硅熔体径向磁场强度逐渐增大,对坩埚底部熔体向晶体熔体固液界面处对流的抑制作用加强,固液界面下方熔体轴向流速减小,使得从坩埚底部运输上来的富氧熔体减少,继而固液界面处的氧浓度降低。随着线圈距离和半径的增大,为保持所需磁场强度,施加电流也逐渐增大,从而能耗增大,与增大通电线圈距离相比,增大通电线圈半径所需的电流较大。通过实验,将CUSP磁场对单晶中氧浓度分布影响的数值模拟结果与实际晶体生长进行了对比,实验结果验证了数值模拟的结果。 Finite element analysis software femag-CZ was used for the simulation of the effect of CUSP magnetic field on the oxygen concentration in CZ-Si crystal growth.Keeping the CUSP radial component in the intersection of CUSP and the crucible melt interface constant,the law of oxygen concentration distribution along melt/crystal interface was studied.With the increase of the distance and radius of CUSP current coils,oxygen concentration in the m-c interface decreased gradually.Keeping the CUSP radial component in the intersection of CUSP and the crucible melt interface constant,CUSP magnetic field current coils distance and radius was adjusted.With the increase of coils distance and radius,the radial magnetic field strength in melt increased gradually,causing the axial melt convection velocity decreased.The melt containing more oxygen content from the bottom of crucible decreased,so the oxygen concentration in m-c interface decreased.With the increase of the distance and radius of coils,the applied current and then energy consumption also increased,compared with the increase of the electric coils distance,the increase of coils radius needed a larger current.Compared the numerical analysis with experiment,the two results gave the same variation tendency.
出处 《稀有金属》 EI CAS CSCD 北大核心 2011年第6期909-915,共7页 Chinese Journal of Rare Metals
基金 国家科技重大专项(2008ZX02401)项目资助
关键词 直拉硅单晶 CUSP磁场 氧浓度 有限元分析 数值模拟 CZ Si crystal CUSP magnetic field oxygen concentration finite element analysis numerical analysis
  • 相关文献

参考文献4

二级参考文献27

  • 1王学锋,翟立君,周旗钢,王敬,戴小林,吴志强.大直径直拉硅单晶炉热场的数值模拟[J].稀有金属,2004,28(5):890-893. 被引量:11
  • 2董淑梅,李言,李留臣,王庆,楚波.激光晶体炉上称重法自动直径控制(ADC)技术[J].人工晶体学报,2005,34(6):1141-1145. 被引量:4
  • 3Hunrle Donald T. J., Crystal Pulling from the Melt, Springer-Verlag, Berlin Heidelberg, 1993.
  • 4Rosenberger F., Fundamentals of Crystal Growth I, Springer-Verlag, Berlin Heidelberg, 1979.
  • 5Vizman D., Graibner O., and Mtiller G., Three-dimensional numerical simulation of thermal convection in an industrial Czochralski melt: comparison to experimental results, J. Cryst Growth, 2001, 233 (4): 687.
  • 6Vizman D., Friedrich J., and MUller G., Comparison of the predictions from 3D numerical simulation with temperature distributions measured in Si Czochralski melts under the influence of different magnetic fields, J. Cryst. Growth, 2001, 230 (1-2): 73.
  • 7Spalart P. R., Strategies for turbulence modeling and simulations, Int. J. Heat. Fluid Flow, 2000, 21 (3): 252.
  • 8Dupret F., Nicodeme P., Ryckmans Y., Woutersa P., andCrocheta M.J., Global modeling of heat transfer in crystal growth furnaces, Int. J. Heat Mass Transfer, 1990, 33 (9): 1849.
  • 9Wetzel Th., Virbulis J., Muiznieksc A., Von Ammona W., Tomziga E., Raminga G., and Webera M., Prediction of the growth interface shape in industrial 300 mm CZ Si crystal growth, J. Cryst. Growth, 2004, 266 (1-3): 34.
  • 10Enger Sven, Graibner Oliver, Muller G., Breuer M., and Durst F., Comparison of measurements and numerical simulations of melt convection in Czochralski crystal growth, J. Cryst. Growth, 2001, 230 (1-2): 135.

共引文献21

同被引文献35

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部