期刊文献+

基于CT图像的肺气管树3D分割方法的研究 被引量:5

Three-dimensional Pulmonary Airway Tree Segmentation from CT Images
下载PDF
导出
摘要 目的:对肺部气管树的分割在临床上具有重要应用价值。针对目前肺气管树分割存在的问题,本文提出了一种结合区域生长和形态学方法的气管树3D分割的方法。方法:首先,采用基于3D联通区域与形态学的方法分割出CT序列图像中的肺实质;其次,利用3D区域生长法初步提取气管树;然后,利用形态学分割方法选取细小气管候选区域,并与上一步分割结果合成三维肺气管区域;最后,再次利用区域生长法去除伪气管区域,提取出最终的气管树。结果:实验结果表明,三维区域生长方法能够很好地获得气管/主支气管、段气管及主要的气管分支,而形态学方法能够有效地检测出细小气管区域。所以利用本文方法可以简单、有效地提取出肺气管树,并防止区域生长过程中的遗漏现象。结论:本文方法可为肺部气管的定量分析奠定基础,具有十分重要的临床诊断意义。 Objective: Pulmonary airway tree segmentation is very valuable in clinic application.Aiming at solving segmentation problems presently,a three-dimensional segmentation method for extracting pulmonary airway tree from CT images is proposed in this paper.Methods: Firstly,the lung parenchyma was obtained from CT images using a three-dimensional(3D) segmentation method.Then,the main pulmonary airway was segmented using 3D region growing method.Next,the morphology method was used to segment the small airway regions.The final airway tree was obtained through region growing once again.Results: Experimental results showed that 3D region growing can obtain main tracheal while branch the morphology method can find out tiny tracheal area very well.So the proposed method can be effectively used in the segmentation of pulmonary airway tree from CT images while avoiding omission during region growing.Conclusions: It builds a good foundation for the follow-up quantitative analysis of pulmonary airway and was applicable in the process of clinical diagnosis.
出处 《中国医学物理学杂志》 CSCD 2011年第5期2867-2871,共5页 Chinese Journal of Medical Physics
基金 国家自然科学基金项目(No.60972122) 上海市教委科研创新项目(No.09YZ216) 上海市研究生创新基金项目(No.JWCXSL1102)
关键词 CT图像 气管树 3D分割 CT images pulmonary airway tree 3D segmentation
  • 相关文献

参考文献11

  • 1Cristian L. Carlsen,steffen renisch and thomas deschamps,"sinmltaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy[C]//Proc.SPIE 4684, 103,2002.
  • 2Tschirren J, Hoffman AE, Mclennan G, et al. lntrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans[J]. IEEE Trans Med hnaging, 2005, 24(12): 1529-1539.
  • 3Van BG, Baggerman W, Van RE. Robust segmentation and anatomical labeling of the airway tree from thoracic CT scans [J]. Medical Image Computing and Computer-Assisted Intervention : Miccai ... International Conference on Medical Image Computing and Computer-Assisted Intervention, 2008,11 (Pt 1):219-226.
  • 4Bischof H. Segmentation of airways based on gradient vector flow[C]// Second International Workshop on Pulmonary Image Analysis, 2009: 191-201.
  • 5Lo P, Sporring J, Pedersen J J, et al. Airway tree extraction with locally optimal paths [J]. Medical Image Computing and Computer-Assisted Intervention : Miccai ... International Conference on Medical hnage Computing and Computer-Assisted Intervention, 2009,12(Pt 2):51-58.
  • 6赵鹏,冯焕清,李传富,王昌,黄煜峰.一种基于参数自适应的CT图像肺气道树分割方法[J].北京生物医学工程,2009,28(5):454-457. 被引量:4
  • 7姜慧研,张晔.基于改进的区域生长法的气管与支气管分割[J].东北大学学报(自然科学版),2009,30(2):191-194. 被引量:8
  • 8任彦华,聂生东.基于肺部CT序列图像的肺实质三维分割[J].中国医学物理学杂志,2010,27(3):1862-1865. 被引量:10
  • 9Adams R, Bischof L. Seeded region growing [J]. IEEE Trans Pattern Anal Mach Intell, 1994,16(6):641-647.
  • 10Jackway P. An improved seeded region growing algorithm [J]. Pattern Recognit Lett, 1997,18(10):1065-1671.

二级参考文献37

  • 1姜慧研,司岳鹏,雒兴刚.基于改进的大津方法与区域生长的医学图像分割[J].东北大学学报(自然科学版),2006,27(4):398-401. 被引量:16
  • 2冈萨雷斯 R C.数字图像处理[M].2版.北京:电子工业出版社,2006:479-498.
  • 3Agus Z A, Akira A. Image segmentation by histogram thresholding using hierarchical cluster analysis [J]. Pattern Recognition Letter, 2006,27(13) : 1515 - 1521.
  • 4Carevic D, Caelli T. Region-based coding of color image using Karhunen-Loeve transform[J]. Graphics Models and Image Processing, 1997,59 : 27 - 38.
  • 5Otsu N. A threshold selection method from gray-level histograms[J]. IEEIC Transactions on Systems,Man,and Cybernetics, 1979,9(1) :62 - 66.
  • 6Yen J C, Chang F J, Chang S. A new criterion for automatic multilevel thresholding [ J ]. IEEE Transactions on Image Processing, 1995,4 (3) : 370 - 378.
  • 7Fan J P, Zeng G H, Mathurin B. Seeded region growing: an extensive and comparative study [J]. Pattern Recognition Letters, 2005,26(8) : 1139 - 1156.
  • 8Adams R, Bischof L. Seeded region growing [J]. IEEE Transactions on Patter. Analysis and Machine Intelligence, 1994,16(6):641 -647.
  • 9Mehnert A, Jackway P. An improved seeded region growing algorithm[J ]. Pattern Recognition Letters, 1997, 18 (10) : 1065 -1071.
  • 10Chen J X, Liu S. A medical image segmentation method based on watershed transform [ C ] // Computer and Information Technology. Washington D C: IEEE Computer Society, 2005 : 634 - 639.

共引文献18

同被引文献49

  • 1王继伟,王弘轩,黄绍辉,王博亮,陈岗,郭明.基于改进对抗生成网络模型的肺气管图像分割[J].中国数字医学,2021,16(10):93-97. 被引量:2
  • 2程远雄,胡罢生,郝立巍,陈思平.一种新的三维气管树提取方法[J].中国医学物理学杂志,2011,28(4):2759-2763. 被引量:2
  • 3王彤,俞同福,尉迟以浩,等.肺科医师读片指南[M].南京:东南大学出版社,2007:5.
  • 4冈萨雷斯 R C,伍兹 R E.数字图像处理[M].阮秋琦,译.2版.北京:电子工业出版社,2003.
  • 5Tschirren J,Hoffman E A,McLennan G,et al.Intrathoracic airway trees:segmentation and airway morphology analysis from lowdose CT scans[J] .IEEE Transactions on Medical Imaging,2005,24 (12):1529-1539.[DOI:10.1109/TMI.2005.857654].
  • 6Lo P,Sporring J,Pedersen J J H,et al.Airway tree extraction with locally optimal paths[C] //Medical Image Computing and Computer-Assisted Intervention-MICCAI 2009.Berlin:Springer,2009:51-58.[DOI:10.1007/978-3-642-04271-3_7].
  • 7Feuerstein M,Kitasaka T,Mori K.Adaptive branch tracing and image sharpening for airway tree extraction in 3-D chest CT[C] //Proceedings of the Second International Workshop on Pulmonary Image Analysis.London,UK:CreateSpace Independent Publishing Platform,2009:273-284.
  • 8Lee J,Reeves A P.Segmentation of the airway tree from chest CT using local volume of interest[C] //Proceedings of the Second International Workshop on Pulmonary Image Analysis.London,UK:CreateSpace Independent Publishing Platform,2009:333-340.
  • 9Fabijanska A.Results of applying two-pass region growing algorithm for airway tree segmentation to MDCT chest scans from EXACT database[C] //Proceedings of the 2nd International Workshop on Pulmonary Image Analysis.London,UK:CreateSpace Independent Publishing Platform,2009:251-260.
  • 10Lo P,Sporring J,de Bruijne M.Multiscale vessel-guided airway tree segmentation[C] //Proceedings of the Second International Workshop on Pulmonary Image Analysis.London,UK:CreateSpace Independent Publishing Platform,2009:323-332.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部