期刊文献+

基于点消除及三次样条平滑的结肠虚拟内窥镜中心路径提取 被引量:2

The Central Path Extraction of Virtual Colonoscopy Based Points Decimating and Cubic Spline Interpolation
下载PDF
导出
摘要 目的:结肠虚拟内窥镜模拟光学内窥镜将CT图像重建后在数字结肠空腔内的导航,结肠虚拟内窥镜的中心路径提取和导航是虚拟内窥镜研究的核心内容。方法:本文基于常用的基于边界距离场(DFB)方法和最大代价生成树方法提取出结肠的中心路径,对于这两种方法存在的提取时间长以及提取路径光滑性差的缺点,本文采用了中心点消减、三次样条平滑等手段来提高结肠中心路径提取的速度并改善提取路径的光滑性。结果:通过对多组实验数据的结果分析表明,本文提出的基于点消除及三次样条平滑方法不但明显缩短了中心路径的提取时间而且显著改善了结肠虚拟中心路径的平滑性。结论:本文方法能够快速、精确的实时提取出结肠的中心路径,是对基于边界距离场和最大代价生成树方法的极大改进,适合应用于结肠虚拟内窥镜的开发应用。 Objective: Colonoscopy reconstruction the CT images and navigation in the digital colon cavity as optic endoscope. The extraction of central path is key issue for colon virtual endoscope.Methods: Based on the common boundary distance field (DFB) method and the maximum cost spanning tree method extracts center path for colon,with the two drawbacks of long time extraction and short of smooth of the center path,this article based on points decimating and cubic spline interpolation,the fast and a smooth colon center path extraction is achieved to improve the distance from boundary(DFB) method.Results: Experiment with much test data shows the validity of the proposed method.Conclusions: The proposed method fast and accurate extracted the colonic center path real-timely,is a great improvement of based on boundary distance of fields and the maximum cost spanning tree method,suitable for the application of virtual colonoscopy.
出处 《中国医学物理学杂志》 CSCD 2011年第5期2878-2881,2894,共5页 Chinese Journal of Medical Physics
基金 广州市科技计划项目:2010J-E471资助 广东省科技计划项目(No.2009B010800019) 广东省产学研结合项目(No.2010B090400543)~~
关键词 结肠虚拟内窥镜 边界距离场 中心点消除 中心路径提取 三次样条插值 colon virtual endoscope distance from boundary points decimating central path extraction cubic spline interpolation
  • 相关文献

参考文献9

二级参考文献39

  • 1刘剑飞,张晓鹏.虚拟内窥镜中漫游路径的获取(英文)[J].中国体视学与图像分析,2005,10(3):176-182. 被引量:2
  • 2[1]Hong L. Muraki S, He T et al. Phvsciallv-based interactive navigation [R]. TR. 96.01.09, Computer Science Department,State University of New York at Stony Brook, USA, 1996.
  • 3[2]Ge Y, Stelts D R, Wang J et al. Computing the centerline of a colon: A robust and efficient method based on 3D skeletons[J].Computer Assisted Tomography, 1999, 23(5):786~794.
  • 4[3]Hong L, Muraki S, Kaufman A et al. Virtual voyage:Interactive navigation in the human colon[A]. In: Proceedings of Association for Computing Machinery SIGGRAPH'97 [C],Los Angeles, CA,USA, 1997: 27~34.
  • 5[4]Ma C M, Wan S Y. Parallel thinning algorithms on 3D(18,6)binary images[J]. Computer Vision and Image Understanding,2000, 80(3):364~378.
  • 6[5]Blezek D, Robb R. Centerline algorithm for virtual endoscopy based on chamfer distance transform and Dijkstra's single source shortest path algorithm [ A ]. In: proceedings of SPIE International Symposium on Physiology and Function from Multidimensional Images[C]. San Diego, CA,USA, 1999: 225~233.
  • 7[6]Zhou Y, Kaufman A, Toga A W. Three- dimensional skeleton and centerline generation based on an approximate minimum distance field [J]. The Visual Computer, 1998, 14 (7): 303 ~314.
  • 8[7]Bitter I, Sato M, Bender M et al. A smooth, accurate and robust centerline extraction algorithm[A]. In: Proceedings of IEEE Visualization 2000[C], Salt Lake City,USA, 2000: 42~52.
  • 9[8]Sato M Bitter I, Bender M et al. Tree-structure extraction algorithm for accurate and robust skeletons[A]. In:Proceedings of IEEE Pacific Graphics 2000[C], Hong Kong, 2000:281 ~289.
  • 10[9]Bitter I, Kaufman A, Sato M. Penalized-distance volumetric skeleton algorithm[J]. IEEE Transactions on Visualization and Computer Graphics, 2001,7 (3): 195 ~ 206.

共引文献26

同被引文献22

  • 1林洲,赵俊,曹立基.结肠的快速虚拟外翻方法[J].中国医疗器械杂志,2008,32(6):394-397. 被引量:4
  • 2Pineau BC, Paskett ED, Chen GJ, et al. Virtual colonoscopy using oral contrast compared with colonoscopy for the detection of patients with colorectal polyps[J]. Gastroenterology, 2003, 125(2): 304-10.
  • 3Summers RM, Yao JH, Pickhardt P J, et al. Computed tomographic virtual colonoscopy computer-aided polyp detection in a screening population[J]. Gastroenterology, 2005, 129(6): 1832-44.
  • 4Bartz D. Virtual endoscopy in research and clinical practice [J]. Computer Graphics Forum, 2005, 24(1): 111-26.
  • 5Wang G, McFarland G, Brown BP, et al. GI tract unraveling with curved cross-sections[D]. US Patent, 2001.
  • 6Zhao J, Cao L J, Zhuang TG, et al. Digital eversion of a hollow structure: An application in virtual colonography [J]. Int J Biomed Imag, 2008. ID: 703028.
  • 7Serlie IW, Vos FM, van Gelder RE, et al. Improved visualization in virtual colonoscopy using image-based rendering [J]. Proc Eur Graphics IEEE Vis Symp, 2001, 3: 137-46.
  • 8Vos FM, van Gelder RE, Serlie IW, et al. Three-dimensional display modes for CT colonography: conventional 3D virtual colonoscopy versus unfolded cube projection [J]. Radiology, 2003, 228(3): 878-85.
  • 9Geiger B, Chefdhotel C, Sudarsky S. Panoramic views for virtual endoscopy[J]. Med Imag Comp Comp-Assis Interv, 2005, 8: 662-9.
  • 10Mang T, Kolligs FT, Schaefer C, et al. Comparison of diagnostic accuracy and interpretation times for a standard and an advanced 3D visualisation technique in CT colonography [J]. Eur Radiol, 2011, 21(3): 653-62.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部