摘要
Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-DOF dynamic equations of a rigid rotor ball bearing system are established. Continuation-shooting algorithm for periodic solutions of the nonlinear non-autonomous dynamic system and Floquet multipliers of the system are used. Furthermore, the bifurcation and stability of the periodic motion of the system in different parametric domains are also studied. Results show that the bifurcation and stability of period-1 motion vary with structural parameters and operating parameters of the rigid rotor ball bearing system. Avoidance of unbalanced force and bending moment, appropriate initial contact angle, axial load and damping factor help enhance the unstable rotating speed of period-1 motion.
Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian con- tact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-DOF dynamic equations of a rigid rotor ball bearing system are established. Continuation-shooting algorithm for periodic solutions of the nonlinear non-autonomous dynamic system and Floquet multipliers of the system are used. Further- more, the bifurcation and stability of the periodic motion of the system in different parametric domains are also stud- ied. Results show that the bifurcation and stability of period-1 motion vary with structural parameters and operating parameters of the rigid rotor ball bearing system. Avoidance of unbalanced force and bending moment, appropriate initial contact angle, axial load and damping factor help enhance the unstable rotating speed of period-1 motion.
基金
Supported by National Natural Science Foundation of China (No.50905061)
the Fundamental Research Funds for Central Universities