期刊文献+

索网结构不稳定平衡状态求解方法研究

THE METHOD OF SOLVING UNSTABLE EQUILIBRIUM STATES OF CABLE-NET STRUCTURES
原文传递
导出
摘要 索网结构的施工张拉成形过程是不稳定平衡状态求解过程,在此过程中机构和弹性位移相互耦合。基于索无应力长度,采用解析抛物线索单元,考虑弹性变形和张力关系;利用铰接体系平衡矩阵理论求解节点不平衡力向量,避免机构刚度矩阵奇异求解难题;最后,用动力松弛法求解将这一耦合问题解耦。算例表明,该方法能求解张力结构成形过程中的不稳定平衡状态,且通过改变主动索无应力长度可模拟施工张拉成形过程;当无节点荷载或节点荷载很小时,抛物线单元与杆单元分析差别较大,表明采用抛物线索单元是合理的。 The tension forming process of cable-net structures in construction is the process of solving unstable equilibriums,in which the mechanism and elastic deformation are coupled.On the basis of unstressed cable length,an analytical parabolic cable element is used to consider the elastic tension and deformation.The unbalanced nodal force vector is evaluated by using the equilibrium matrix theory of the pin joint system,which avoids solving the singular stiffness matrix of a mechanism.The dynamical relaxation method is used to solve the nonlinear equation by making the coupling problem decoupled.Numerical examples indicate that the proposed algorithm is capable of solving the unstable equilibrium and simulating the tension forming process in construction by changing the unstressed length of active cables.When there is no load or the load is small,the analytical results of employing parabolic elements and link elements are significantly different,which shows the fidelity of parabolic cable elements.
出处 《工业建筑》 CSCD 北大核心 2011年第11期110-115,共6页 Industrial Construction
基金 国家自然科学基金项目(50878128)
关键词 索网 非稳定平衡 抛物线单元 动力松弛法 cable-net dynamic relaxation unstable equilibrium parabolic cable element
  • 相关文献

参考文献13

  • 1沈世钊 徐崇宝 赵臣.悬索结构设计[M].北京:中国建筑工业出版社,2002..
  • 2Geiger D H. The Design and Construction of Two Cable Domes for the Korean Olympics[ C ] J/ Shells Membranes and Space Frames, Proc. LASS Symposium. 1986: 265- 272.
  • 3Geiger D H. Design Details of an Elliptical Cable Dome and a Large Span Cable Dome (210 m) Under Construction in the United States [ C ]// Proceedings of IASS - ASCE International Symposium. Bangalore : 1988.
  • 4Jeon B S, Lee J H. Cable Membrane Roof Structure with Oval Opening of Stadium for 2002 FIFA World Cup in Busan [ C ] // Proceedings of Sixth Asian - Pacific Conference on Shell and Spatial Structures. Sou1:2000 : 1037 - 1042.
  • 5Seok H B. An Introduction to Inehon Munhank 2002 World Cup Stadium [ C ] l// Proceedings of Sixth Asian - Pacific Conference on Shell and Spatial Structures. Sou1:2000:1033 - 1036.
  • 6Fuller R B. Tensile-Integrity Structures: U S, 3063521 [P]. 1962.
  • 7袁行飞,董石麟.索穹顶结构施工控制反分析[J].建筑结构学报,2001,22(2):75-79. 被引量:54
  • 8张其林,罗晓群,杨晖柱.索杆体系的机构运动及其与弹性变形的混合问题[J].计算力学学报,2004,21(4):470-474. 被引量:15
  • 9钱若军,苏波,林智斌.工程结构中的几何位移分析理论、方法和应用研究[J].工程力学,2008,25(8):70-76. 被引量:3
  • 10邓华,姜群峰.环形张力索桁罩棚结构施工过程的形态分析[J].土木工程学报,2005,38(6):1-7. 被引量:10

二级参考文献27

  • 1唐建民,沈祖炎,钱若军.索穹顶结构成形试验研究[J].空间结构,1995,1(2):60-64. 被引量:6
  • 2潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].青岛大学学报(自然科学版),1996,9(1):83-96. 被引量:24
  • 3聂润兔,王学孝,邹振祝,邵成勋.可变几何桁架展开运动学和动力学分析[J].哈尔滨工业大学学报,1997,29(1):33-36. 被引量:3
  • 4钱若军.张力结构形状判定述评[A]..新型空间结构论文集[C].杭州:浙江大学出版社,1994.299-312.
  • 5[2]Kawaguichi K, Hangai Y. Analysis of stabilizing paths and stability of kinematically indeterminate frameworks [A], Proceedings of the 3rd Summer Colloquium on Shell and Spatial Structures [C].1990: 195-204.
  • 6[3]Tanaka H, Hangai Y. Rigid body displacement and stabilization conditions of unstable structures [A],Proc IASS Symposium[C]. Osaka, 1986,2:55-62.
  • 7[4]Kawaguichi K, Hangai Y, Nabana K. Numerical analysis for folding of space structures [J]. Space Structures, 1993,4: 813-823.
  • 8[5]Zhang Q L, Peil U. A modified member element allowing large loading and large deflection increments [J]. Communication of Int J Num Meth Engng, 1996,12: 235-242.
  • 9[6]Adi Ben Israel,Thomas N E Greville.广义逆的理论和应用[M].刘轩黄,彭守权,译.武汉:华中理工大学出版社,1988.(Adi Benisrael,Thomas N E Greville.Generalized Inverse Matrix Theory and Application [M]. Liu Xuanhuang, Peng Shouquan, Translated.Wuhan: Huazhong University of Science and Technology Press, 1988. (in Chinese))
  • 10Geiger. Roof structure [M]. U.S.: Patent 4736553, 1988.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部