摘要
本文借用s元的Kergin插值理论以及插值公式定义了一类多元广义Stirling数偶S_1(α,β),S_2(α,β),作为古典Stirling数偶的一种推广。并研究了S_1(α,β),S_2(α,β)的一些性质,如正交性、递推关系、反演公式等。
A kind of muttivariate generalized stirling number pairs is defined in this paper by using s-variate Kergin interpolation and interpolatory formula. The s-variate Stirling number pairs, S_1 (α, β) and S_2 (α,β), extend the classical Stirling number pair in univariate case to multivariate case. Some properties of S_1 (α, β) and S_2(α, β)are also studied, such as orthogonality, recurrent relations and reciprocal formulae.
出处
《应用数学》
CSCD
北大核心
1990年第4期13-20,13-19,共8页
Mathematica Applicata