期刊文献+

高数值孔径光刻中衬底反射率的控制 被引量:1

Control of substrate reflectivity in hyper numerical aperture lithography
下载PDF
导出
摘要 高数值孔径(N4)光刻中,需要控制衬底反射率以减小薄膜干涉对光刻性能的影响。采用薄膜光学方法研究了高NA光刻中底层抗反膜(BARC)对衬底反射率的控制。针对硅基底对单层和双层BARC进行优化以探索满足高NA光刻要求的BARC材料光学参数容限。结果表明,当NA超过0.8时,单层BARC无法控制衬底反射率而有必要采用双层BARC。横电(TE)比横磁(TM)偏振光的衬底反射率更难以控制。NA越大,单层BARC折射系数的优化值越大。双层BARC中的顶层膜应采用低吸收率材料而底层膜应采用高吸收率材料。本研究可为高NA光刻中的BARC材料研制及衬底反射率控制提供理论依据。 Substrate reflectivity needs to be controled to reduce the impact of thin-film interference on lithography performance in hyper numerical aperture (NA) lithography. Based on thin film optics method, the control of substrate reflectivity with bottom antireflection coating (BARC) was investigated for hyper- NA lithography. Single-layer and dual-layer BARC on a silicon substrate were optimized to investigate the margins of BARC's optical parameters which meet the requirements of hyper-NA lithography. It is found that single-layer BARC fails to control substrate reflectivity when NA is more than 0.8 and dual-layer BARCs become essential. The substrate reflectivity of TE wave is more uncontrollable as compared to TM wave. The optimized values of refractive index for single-layer BARC grow as the NA increases. In a dual- BARC structure, the top layer should be low absorptive while the bottom one should be high absorptive. It provides theory base for the research of BARC materials and the control of substrate reflectivity in hyPer-NA lithography.
出处 《量子电子学报》 CAS CSCD 北大核心 2011年第6期730-736,共7页 Chinese Journal of Quantum Electronics
基金 长沙学院引进人才科研启动基金(SF080102) 长沙学院光电信息技术创新团队科研基金资助项目(10700-99008)
关键词 薄膜光学 衬底反射率 底层抗反膜优化 高数值孔径光刻 thin film optics substrate reflectivity bottom antireflection coating optimization hyper-numerical-aperture lithography
  • 相关文献

参考文献12

  • 1Brunner T A. Optimization of optical properties of resist processes [C]. SPIE, 1991, 1466: 297-308.
  • 2Huang V, Wu T S, Yang M, et al. Dual anti-reflection layers for ARC/hard-mask applications [C]. SPIE, 2006, 6154(3Q): 61543-61548.
  • 3Oh S C, Kim Y C, Nab S H, et al. Optimizing of thin film interference effects in KrF lithography for 0.15 #m design rules [C]. SPIE, 2000, 3999: 926-934.
  • 4James A B, Michael C, et al. Thin-film interference effects for thin resist films on a broadband scanner [C]. SPIE, 1998, 3334: 685-691.
  • 5游利兵,周翊,梁勖,余吟山,方晓东,王宇.近期光刻用ArF准分子激光技术发展[J].量子电子学报,2010,27(5):522-527. 被引量:9
  • 6Mack C A. Fundamental Principles of Optical Lithography: the Science of Microfabrication [M]. Chichester: John Wiley Sons, 2007: 147, 162, 169, 219.
  • 7Jung M R, Kwak E A, An I, et al. Single anti-reflection coating optimization with different polarizations for hyper numerical aperture immersion lithography [J]. Japanese Journal of Applied Physics, 2006, 45(12): 9280.
  • 8Chen H L, Fan W D, Wang T J, et al. Multi-layer bottom antireflective coating structures for high NA ArF exposure system applications [C]. SPIE, 2002, 4690: 1085-1092.
  • 9Yasushi S, Satoshi T, Makoto N, et al. Multi-layer BARCs for hyper-NA immersion lithography process [C]. SPIE, 2007, 6519(65192A): 65191-65192.
  • 10Yu S S, Lin Burn J, Yen Anthony, et al. Thin-film optimization strategy in high numerical aperture optical lithography, part 1: principlies [J]. Journal of Microlithography, Microfabrication, and Microsystems, 2005, 4(4): 43001-43003.

二级参考文献22

  • 1Saito T,Suzuki T,Yoshino M,et al.Ultra line-narrowed ArF excimer laser G42A for sub-90-nm lithography[C].SPIE,2003,5040:1704-1711.
  • 2Yoshino M,Nakarai H,Ohta T,et al.High-power and high-energy stability injection lock laser light source for double exposure or double patterning ArF immersion lithography[C].SPIE,2008,6924:69242S.
  • 3Fleurov V,Rokitski S,Bergstedt R,et al.XLR 600i:Recirculating ring ArF light source for double patterning immersion lithography[C].SPIE,2008,6924:69241R.
  • 4International technology roadmap for semiconductors 2007 edition lithography[OL].http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007-Lithography.pdf.
  • 5Piscani E C,Ashworth D,et al.Continuing 193 nm optical lithography for 32 nm imaging and beyond[C].SPIE,2008,6924:692421.
  • 6Hazelton A J,Wakamoto S,Hirukawa S,et al.Double patterning requirements for optical lithography and prospects for optical extension without double patterning[C].SPIE,2008,6924:69240R.
  • 7Miao Xiangqun,Huli L,Chen H,et al.Double patterning combined with shrink technique to extend ArF lithography for contact holes to 22 nm node and beyond[C].SPIE,2008,6924:69240A.
  • 8Fleurov V B,Colon III D J,Brown D J W,et al.Dual-chamber ultra line-narrowed excimer light source for 193 nm lithography[C].SPIE,2003,5040:1694-1703.
  • 9Ishihara T,Besaucele H,Maley C,et al Long-term reliable operation of a MOPA-based ArF light source for microlithography[C].SPIE,2004,5377:1858-1865.
  • 10Ishihara T,Rafac R,Dunstan W,et al.XLA-200:the third-generation ArF MOPA light source for immersion lithography[C].SPIE,2005,5754:773-779.

共引文献8

同被引文献8

  • 1林清华,李文静,周金运.PCB激光投影成像扫描技术分析[J].量子电子学报,2007,24(3):357-360. 被引量:6
  • 2林清华,宋超,王鲁宾,周金运.用于光刻的准分子激光束整形及其研究进展[J].量子电子学报,2007,24(4):415-419. 被引量:6
  • 3Lin K,Jain K. Design and fabrication of stretchable multilayer self-aligned interconnects for flexible electronics and large-area sensor arrays using excimer laser photoablation[J].IEEE Electron Device Letters,2009,(01):14-17.doi:10.1109/LED.2008.2008665.
  • 4Zimmermann M,Lindlein N,Voelkel R. Microlens laser beam homogenizer:from theory to application[J].Proceedings of Spie,2007,(01):1-13.
  • 5Yao Hanmin;Hu Song;Xing Tingwen.光学投影曝光微纳加工技术[M]北京:北京工业大学出版社,200683-129.
  • 6Katagiri S,Moriyama S,Terasawa T. Novel alignment technique for 0,1-micron lithography using the wafer rear surface and canceling tilt effect[J].Optical Engineering,2004,(10):2344-2349.
  • 7Horner J L,Gianino P D. Phase-only matched filtering[J].Applied Optics,1984,(16):812-816.
  • 8付加友,董伟伟,邵景珍,陶汝华,王效顺,余吟山,方晓东.准分子激光在液芯光纤中传输特性的实验研究[J].量子电子学报,2011,28(2):163-167. 被引量:4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部