期刊文献+

4H-SiC雪崩光电探测器中倍增层参数的优化模拟

Optimal simulation of parameters for multiplication layer of 4H-SiC avalanche photodiode
下载PDF
导出
摘要 应用ATLAS模拟软件,设计了吸收层与倍增层分离的(SAM)4H-SiC雪崩光电探测器(APD)结构。分析了不同外延层厚度和掺杂浓度对器件光谱响应的影响,对倍增层参数进行优化模拟,得出倍增层的最优化厚度为0.26μm,掺杂浓度为9.0×10^(17)cm^(-3)。模拟分析了该APD的反向Ⅳ特性、光增益、不同偏压下的光谱响应和探测率等,结果显示该APD在较低的击穿电压-66.4 V下可获得较高的倍增因子10~5;在0 V偏压下峰值响应波长(250 nm)处的响应度为0.11A/W,相应的量子效率为58%;临近击穿电压时,紫外可见比仍可达1.5×10~3;其归一化探测率最大可达1.5×10^(16)cmHz^(1/2)W^(-1)。结果显示该APD具有较好的紫外探测性能。 A separate absorption and multiplication (SAM) 4H-SiC avalanche photodiode(APD) was de- signed by using the simulation software of ATLAS. The influences of various thicknesses and doping concen- trations of epitaxial layers'on spectral response were analysed, and the parameters of multiplication layer were optimal simulated. Then the optimal thickness of 0.26 μm and doping concentration of 9.0 ×10^17 cm-3 for multiplication layer were obtained. The simulation results showed that the APD exhibited low break- down voltage of -66.4 V with high gain of 105. At the bias of 0 V, the peak responsivity was about 0.11 A/W and the corresponding quantum efficiency was 58%. The UV-to-visible rejection ratio of 1.5 ×10^3 close to the breakdown voltage and the maximum spectral detectivity about 1.5 ×10^16 cmHz1/2w-1 were also achieved. The above results indicated that the APD had a good performance for UV signal detection.
出处 《量子电子学报》 CAS CSCD 北大核心 2011年第6期742-747,共6页 Chinese Journal of Quantum Electronics
基金 福建省自然科学基金项目(2009J05151)资助
关键词 光电子学 4H—SiC APD 光谱响应 探测率 optoelectronics 4H-SiC avalanche photodiode responsivity detectivity
  • 相关文献

参考文献2

二级参考文献11

  • 1朱会丽,陈厦平,吴正云.吸收层与倍增层分离的4H-SiC雪崩光电探测器[J].Journal of Semiconductors,2007,28(2):284-288. 被引量:4
  • 2[1]Anikin M,Andreev A N,Pyatko S N,et al.UV photodetectors in 6H-SiC [J].Sensors & Actuators A-Physical,1992,33(1-2):91-93.
  • 3[2]Yan F,Qin C,Zhao J,et al.Low-noise visible-blind UV avalanche photodiodes with edge terminated by 2 degree positive bevel [J].Electronics Letters,2002,38(7):335-336.
  • 4[3]Edmond J A,Kong Huashuang,Carter C H J.Blue LEDs,UV photodiodes and high-temperature rectifiers in 6H-SiC [J].Physica B:Condensed Matter,1993,185(1-4):453-460.
  • 5[4]Luo Y F,Zhao Y,Olsen J H.4H-SiC visible blind UV avalanche photodiode [J].Electronics Lett.,1999,35(11):929-930.
  • 6[5]Zhang Y G,Li A Z,Milnes A G.Metal-semiconductor-metal ultraviolet photodetectors using 6H-SiC [J].IEEE Photonics Technology Lett.,1997,9(3):363-364.
  • 7[6]Frojdh C,Thungstrom G,Nilsson H E,et al.UV-sensitive photodetectors based on metal-semiconductor contacts on 6H-SiC [J].Physica Scripta,169-171.
  • 8[7]Torvik J T,Pankove J I,Van Zeghbroeck B J.Comparison of GaN and 6H-SiC p-i-n photodetectors with excellent ultraviolet sensitivity and selectivity [J].IEEE Transactions on Electron Devices,1999,46(7):1326-1331.
  • 9[8]Wu Z Y,Yan F,Xin X B,et al.Demonstration of the first metal-semiconductor-metal ultraviolet photodetectors on 4H-SiC [J].Material Science Forum,Accepted .
  • 10[9]Shi Changxin.Metal-semiconductor-metal Photodetectors [M] (金属 - 半导体 - 金属光电探测器) [M].Shanghai:Shanghai Jiaotong University Press,2000.30 (in Chinese).

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部