摘要
研究了一类亚纯系数微分方程的复振问题,通过应用亚纯函数的分解和模的增长估计,得到了该类方程的级的精确估计,同时对方程的解及其一阶导数与不动点间的关系进行了研究,指出由于受到微分方程的制约,该类方程的不动点密度与解的增长性有着密切的关系.
We investigate the complex oscillation os a class of differential equation with momorphic coefficients.By using the factorization of Mromorphic function and the geowth estimation of the odual,we obtain precise estimation of the order of growth of solutions of the equations. And investigates the relation between solutions of a claas of differential equation and the lth derivatives of a claas of linear differential equations with the fixed points.Due to the control of the differential equations,the properties of fixed points of solutions of a claas of differential equation are closely related with the growth of solutions.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第22期185-190,共6页
Mathematics in Practice and Theory
基金
贵州省科学技术基金(2010GZ43286)
贵州省教育厅科研基金(2007079)
关键词
微分方程
级
亚纯函数
不动点
收敛指数
diferential equation
the order of growth
mromorphic function
fixed points eponent of convergence