期刊文献+

几类典型随机非线性系统的辨识 被引量:5

IDENTIFICATION OF SEVERAL CLASSES OF STOCHASTIC NONLINEAR SYSTEMS
原文传递
导出
摘要 考察实际中常见的三类典型随机非线性系统(即Wiener、Hammerstein和NARX系统)的辨识,首先概述了现有的递推和非递推辨识算法,然后介绍这三类系统的一个统一辨识框架:利用系统所确定的过程的马氏性及混合型,将辨识转化为求函数零点的问题,基于扩张截尾的随机逼近算法,得到了递推、强一致的辨识结果,并给出了数值模拟验证辨识算法收敛到真值. Identification of several classes of stochastic nonlinear systems,i.e.,the Wiener system,the Hammerstein system and the nonlinear ARX system,is considered.First,existing recursive and nonrecursive algorithms for identifying these systems are briefly summarized. Then,a unified framework to recursively identify these systems is introduced.Based on the Markov chains and mixing properties connected with these systems,the identification is transformed into root searching problems.Finally,identification algorithms based on stochastic approximation with expanding truncations are introduced and strong consistency of estimates is established.The theoretical results are verified by simulation examples.
出处 《系统科学与数学》 CSCD 北大核心 2011年第9期1019-1044,共26页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60221301 61104052)资助课题
关键词 Wiener系统 HAMMERSTEIN系统 NARX系统 马氏链 随机逼近 递推辨识 Wiener system Hammerstein system nonlinear ARX system recursive identification stochastic approximation strong consistency
  • 相关文献

参考文献56

  • 1Ljung L. System Identification. Upper Saddle River, N J: Prentice Hall 1987.
  • 2Chen H F and Guo L. Identification and Stochastic Adaptive Control, Boston, MA: Birkhauser 1993.
  • 3Kim J and Konstantinou K. Digital predistortion of wideband signals based on power amplifier model with memory. IEE Electronics Letters, 2001, 37(23): 1417-1418.
  • 4Ferrari-Trecate G, Muselli M, Liberati D. et al. A clustering technique for identification of piecewise affine systems. Automatica, 2003, 39: 205-217.
  • 5Zhu Y. Distillation column identification for control using Wiener model. Proceedings of American Control Conference, San Diego, California, 1999, 55: 3462-3466.
  • 6Fan J Q and Yao Q. Nonlinear Time Series: Nonparametric and Parametric Approach. New York: Springer-Verlag, 2003.
  • 7Ljung L. Perspectives on systems identification. Proceedings of 17th IFAC World Congress, Seoul, Korea, 2008.
  • 8Niness B. Some systems identification challenges and approaches. Proceedings of 15th IFAC Sym- posium on System Identification, 2009: 1-20.
  • 9Eskinat E, Johnson S and Luyben W L. Use of Hammerstein models in identification of nonlinear systems. AIChE Journal, 1991, 37(2): 255-268.
  • 10Kalafatis A, Arifin N, Wang L and Cluett W R. A new approach to the identification of pH processes based on the Wiener model. Chemical Engineering Science, 1995, 50(23): 3693-3701.

同被引文献34

  • 1张勇,杨慧中,丁锋.有色噪声干扰下的一种系统辨识方法[J].南京航空航天大学学报,2006,38(B07):167-171. 被引量:25
  • 2徐小平,王峰,胡钢.系统辨识研究的现状[J].现代电子技术,2007,30(15):112-116. 被引量:22
  • 3Narendra K S, Gallman P G. An iterative method for the identification of nonlinear systems using a Hammerstein model [J] . IEEE Transactions on Automatic Control, 1966, 11(3) :546 -550.
  • 4Chang F, Luus R. A no iterative method for identification using Hammerstein model [J]. IEEE Transactions on Automatic Control ,1971 ,16(5) :464 - 468.
  • 5Bai E W. Identification of systems with hard input nonlinearities [C J. In Perspectives in Control Moheimani R, Ed. New York: Springer Verlag, 200 1.
  • 6Bai E W. Frequency domain identification of Hammerstein models [J]. IEEE Transactions on Automatic Control, 2003, 48 ( 4) : 530 -542.
  • 7Rai E W, Li D. Convergence of the iterative Hammerstein system identification algorithm [J]. Automatic, 2004, 49(11) :1929.
  • 8Goethals I, Pelckmans K, Suykens J A K, et al. Identification of MIMO Hammerstein models using least squares support vector machines [J]. Automatica, 2005, 49 ( 10) : 1263 - 1272.
  • 9Goethals I, Pelckmans K, Suykens J A K, et al. Subspace identification of Hammerstein systems using least squares support vector machines [J]. IEEE Transactions on Automatic Control, 2005, 50(10) : 1263 -1519.
  • 10Laurent V, Rik P, Johan S. Blind maximum likelihood identification of Hammerstein systems [J]. Automatica, 2008, 44: 3139 -3146.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部