期刊文献+

粒子群优化与差分进化混合算法的综述与分类 被引量:17

A SURVEY AND TAXONOMY ON HYBRID ALGORITHMS BASED ON PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTION
原文传递
导出
摘要 优化算法的性能改进长期以来一直是算法研究者们追求的一个重要目标,对不同算法进行混合以期利用算法的互补优势来获得性能更优异的算法代表了一类典型的设计思想.针对两类基于群体演化的优化算法——粒子群优化(PSO)与差分进化(DE)算法,对基于二者的各种混合算法(DEPSO)进行了系统而全面的综述,并在此基础上提出了一种混合策略分类方法,对现有的各种典型DEPSO算法进行了分类,比较了各种混合策略的异同,并指出了一些新的研究方向和混合设计原则. Improving the performance of optimization algorithms has long been an important pursuit of researchers.It is a typical design idea and paradigm to combine different optimizers for a synergy of their complementary advantages.Regarding two kinds of population-based evolutionary algorithms,the particle swarm optimizer(PSO) and the differential evolution (DE),we present a systematic and comprehensive survey on their hybrids(DEPSOs) in the literature and propose a taxonomy of hybridization strategies.Based on the taxonomy, we make a classification of different DEPSOs and analyze their similarities and differences. We also point out some new directions for future research and provide several guidelines for hybridization design of optimizers.
作者 辛斌 陈杰
出处 《系统科学与数学》 CSCD 北大核心 2011年第9期1130-1150,共21页 Journal of Systems Science and Mathematical Sciences
基金 国家杰出青年科学基金(60925011)
关键词 优化 混合策略 粒子群优化 差分进化 探索与开发 Optimization hybridization strategy particle swarm optimization differential evolution exploration and exploitation.
  • 相关文献

参考文献3

二级参考文献128

共引文献319

同被引文献177

引证文献17

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部