期刊文献+

基于贝叶斯网络的健壮社团检测 被引量:2

A Novel Algorithm for Detecting Stable Community of Complex Network Based on Bayesian Network
下载PDF
导出
摘要 健壮社团是复杂网络社团结构中稳定部分,健壮社团发现是非常困难的;提出了一种基于贝叶斯网络推理的健壮社团发现算法,把健壮社团发现问题当做推理问题,构造一个贝叶斯网络,根据结点的度来设置贝叶斯网络相关参数,然后将某些内部联系特别紧密的网络结点设为证据结点,在贝叶斯网络中进行信度传播,得到在已知证据的情况下其余结点属于该健壮社团的概率,最后得到复杂网络中的所有健壮社团;对足球俱乐部网络(115个结点)和随机网络(128个结点)的测试结果表明所提方法能有效地检测出复杂网络中存在的健壮社团,具有较好的应用价值。 The stable community is the stable part of complex network community structure, it is difficult to detecte the stable community of complex network. A novel algorithm for detecting stable community of complex network based on bayesian network is proposed. We regard the problem of detecting stable community as reasoning problems, construct a bayesian, network, set bayesian network related parame- ters according to the node degrees, put some internal contact special close network node as evidence node, spread the credibility in the bayes- ian network, get the probability which a node belongs to a stable community, and obtain all stable communities of a complex network.. The test results of football club network (115 nodes) and the stochastic network (128 nodes) indicate that the proposed method can effectively detect stable communities existing in the complex network , and has a good application value.
作者 裴志松 冯雪
出处 《计算机测量与控制》 CSCD 北大核心 2011年第11期2679-2681,2698,共4页 Computer Measurement &Control
基金 吉林省教育厅"十二五"科研课题(吉教科合字2011第353号)
关键词 复杂网络 健壮社团 贝叶斯网络 complex network stable community bayesian network
  • 相关文献

参考文献6

二级参考文献41

  • 1陈辉,申敏,刘树军.高效验证平台在TD-SCDMA终端芯片功能验证中的应用[J].重庆邮电学院学报(自然科学版),2006,18(3):299-302. 被引量:10
  • 2易江芳,佟冬,程旭.使用贝叶斯网络的高效模拟矢量生成方法[J].计算机辅助设计与图形学学报,2007,19(5):616-621. 被引量:7
  • 3Newman M E J. Scientific Collaboration Networks Ⅱ: Shortest Paths, Weighted Networks, and Centrality[J]. Physical Review E, 2001, 64(1): 132-135.
  • 4Girvan M, Newman M E J. Community Structure in Social and Biological Networks[EB/OL]. (2002-06-11). http://www.pnas.org/ cgi/reprint/99/12/7821 .pdf?ck=nck.
  • 5Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks[J]. Physical Review E, 2004, 69(2): 113.
  • 6Clauset A, Newman M E J, Moore C. Finding Community Structure in Very Large Networks[J]. Physical Review E, 2004, 70(6): 111.
  • 7Xu Xiaowei, Yuruk N, Fang Zhidan, et al. SCAN: A Structural Clustering Algorithm for Networks[C]//Proc. of the t3th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA: [s. n.], 2007: 824-833.
  • 8Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks[J]. Phys. Rev. E., 2004, 69(2): 113-127.
  • 9Tyler J R, Wilkinson D M, Huberman B A. Email as Spectroscopy: Automated Discovery of Community Structure Within Organizations[C]//Proc. of the 1st Int'l Conf. on Communities and Technologies. Amsterdam, Holland: [s. n.], 2003:81-96.
  • 10Radicchi F, Castellano C, Cecconi F, et al. Defining and Identifying Communities in Networks[C]//Proc. of the National Academy of Science of USA. Rome, Italy: [s. n.], 2004: 2658-2663.

共引文献22

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部