期刊文献+

基于小波包最优基的运动想象EEG自适应特征提取方法 被引量:7

Adaptive Feature Extraction Based on Best Basis of Wavelet Packet for Motor Imagery EEG
下载PDF
导出
摘要 针对运动想象脑机接口系统存在分类正确率低、自适应能力差等不足,提出一种基于小波包最优基的自适应特征提取方法;该方法首先对运动想象EEG进行小波包分解;其次,对传统的距离准则进行改进,通过引入权重因子表征对类内距离和类间距离的关注程度,获得一种既可满足小波包最优基评价准则的可加性条件,又有效地增强了频带特征信息的可分离性的评价准则;进而,采用"自底向顶、自左至右"的快速搜索策略获取小波包最优基,并选取最优基对应的分类性能评价值较高的部分频带小波包系数构成分类特征;仿真结果表明本方法最高分类正确率可达93.4%,与常用的时频分析方法对比,验证了本算法具有较高的分类正确率和较小的时间花费。 In brain--computer interfaces of imagery movement, a new method which can adaptively extract features on the basis of the best wavelet package basis is proposed to solve the problems such as the low classification accuracy and weak self--adaptation, etc. First, wavelet packet is exploited to decompose the motor imagery EEG signal; second, the traditional distance criterion is optimized by introducing a weight parameter which reflects the importance of including both the interelass and the intraclass inertias, and this evaluation criterion for classification is not only under the condition that the criteria is additive for the choice of the best wavelet packet basis, but also can effectively improve the separability of the feature information in frequency subbands; Third, the best wavelet packet basis is attained by using a fast search strategy of "from the bottom to the top. from the left to the right", and the classification feature is extracted by choosing the part wavelet package coefficient which can attain higher value by calculating the classification evaluation criterion according to the best 4oasis; The experimental results which are compared with another common method of time and frequency analysis, show that the algorithm could produce high classification accuracy and less time consumption.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第11期2755-2758,2762,共5页 Computer Measurement &Control
基金 北京市自然科学基金项目(4082004) 北京市自然科学基金项目(4112011)
关键词 运动想象脑电 特征提取 个体自适应 小波包最优基 评价准则 imagery movement EEG feature extraction self-adaptation best wavelet package basis evaluation criterion
  • 相关文献

参考文献8

二级参考文献73

共引文献115

同被引文献57

  • 1庄玮,段锁林,徐亭婷.基于SVM的4类运动想象的脑电信号分类方法[J].常州大学学报(自然科学版),2014,26(1):42-46. 被引量:5
  • 2刘胜,李妍妍.自适应GA-SVM参数选择算法研究[J].哈尔滨工程大学学报,2007,28(4):398-402. 被引量:46
  • 3Li Y B, Li J J. Harris Comer Detection Algorithm Based on Improved Contourlet Transform ~J ].Proeedia Engineering, 2011,15:2239-2243.
  • 4Dong Y S,Ma J W. Feature. Extraction Through Contourlet Subband Clustering for Texture Classification[J]. Neurocom- puting,2013,116 : 157-164.
  • 5Mosleh A,Z~ F,Azizi R. Texture Image Retrieval Using Contourlet Transform[ C]//Intenmfional Symposium on Sig- nal, Circuit and Systems, l.aso, 2009,1 : 1-4.
  • 6Kuong H P, Kin M L. Multi-resolution Fature Fusion for Face Recognition[ J ]. Pattern Recognition, 2013,47(2) :556-567.
  • 7Liu Z M, Liu C J. Fusion of Cokor, I.~eal Spatial and Global Frequency Information for Face Recognition [J]. Pattern Recognition, 2010,43 : 2882-2890.
  • 8Minh N D, Vetterli M. The Contourlet Transform: An Ei~cient Directional Multire~lution Image Representation [J]. IEEE Transactions on Image Processing, 2005,14(12): 2091-2106.
  • 9Rahtu E,Salo M,Heikkila J. A~me Invariant Pattern Recog- nition Using Multi-Scale Autoeonvalution[ J ]. Pattern Anal- ysis and Machine Intelligence, 2005,27 ( 6 ) : 908-918.
  • 10Ojala T, Pietikainen M. Multiresolution Gray-Scale and Ro- tation Invariant Texture Classification with Local Binary Patterns [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002,24( 7 ) : 971-987.

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部