期刊文献+

具有在线自学习能力的脑电信号分类方法 被引量:3

A online Self-learning Approach to EEG Classification
下载PDF
导出
摘要 脑电信号具有时变性、个体差异性且容易受身体状态、心情、体位等因素影响的特点,传统的BP网络分类器难以适应动态脑电特征的变化致使在线分类效果急剧下降;文章提出一种具有在线自学习能力的脑电信号分类方法;该方法将BP网络作为传统Ada-Boost集成学习框架下的弱分类器,形成BP_AdaBoost基本网络分类器;进而,引入遗忘因子改进AdaBoost算法,通过改变样本的初始权重增强其时间相关性,获得BP_AdaBoost分类器;并进一步借鉴半监督的思想增加基于K近邻规则的自评判反馈环节,提高获取新增样本确切标签的能力,适时增加训练样本信息;最后,以国际BCI竞赛数据集为基础,采用Hilbert-Huang变换提取脑电特征进行了仿真实验;结果表明:文章提出的分类方法对时间、个体均具有较好的自适应能力和稳健性,与传统BP神经网络相比分类正确率提高约23.42%。 With time--varying volatility and individual differences, EEG signals are easily affected by physical condition, mood, body posture, etc. The online classification performance of the traditional BP network is lowered significantly because of the difficulties in tracking the dynamic changes oS EEG. This paper presents an online Self--learning Approach to EEG Classification. It applies BP network as a weak classifiers of the traditional AdaBoost integrated learning framework to form a BP--AdaBoost basic network classifier. Then, a forgetting factor is introduced to improve the AdaBoost algorithm, adjust the initial weights of the sample to enhance its temporal correlation, and ob- tain the BP--AdaBoost classification. Furthermore, by increasing the self-- evaluation feedback loop based on K--nearest neighbour rule, which is learned from the idea of semi--supervision, the ability of obtaining the exact labels of the added sample is increased and the sample information also can be expanded timely. Finally, based on the data of the international BCI competition database, a simulation experiment is conducted by extracting EEG features through Hilbert--Huang transform. Compare with the traditional BP neural network increased about 23.42~ classification accuracy. The result shows that the approach, proposed in this paper, has a good adaptable ability and robustness in both time and individual.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第11期2763-2765,2784,共4页 Computer Measurement &Control
基金 北京市自然科学基金项目(4082004 4112011)
关键词 自学习 EEG 识别 ADABOOST算法 self--learning EEG recognition AdaBoost algorithm
  • 相关文献

参考文献8

二级参考文献68

  • 1谢水清,杨阳,杨仲乐.脑-机接口中高性能虚拟键盘的实现[J].中南民族大学学报(自然科学版),2004,23(2):38-40. 被引量:8
  • 2E Curran, P Sykacck, S J Roberts. Cognitive tasks for driving a braincomputer interface system: a pilot study[J]. IEEE Transaction on Neural System and Rehabilitation Engineering,2003,12(1) :48 - 54.
  • 3陈卓.脑部表层扫描技术-帮助大脑控制外部环境[DB/OL].http://www. cctv. com/news/world/20040929/102184. shtml,2004-09-29.
  • 4J R Wolpaw, N Birbaumer, W J McFarland. Brain-Computer Interface Technology: A review of the first international meeting[J] .IEEE Transaction on Rehabilitation Engineering,2000,8(2): 164- 173.
  • 5EEG-based communication [ DB/OL ]. http://www. ee. ic. ac. Uk/esearch/eural/bci/review. html, 2004-05-02.
  • 6Vaughan T M.EEG-based communication:prospects and problems[J].IEEE Trans Rehabil Eng, 1996,4(4) :425 - 430.
  • 7B Graimann, J E Huggins, S P Levine. Detection of ERP and ERD/ERS patterns in single ECG channels[A] .Proc of the 1st international IEEE EMBS Conference on Neural Engineering [C]. Capri island:IEEE,2003,614 - 616.
  • 8Vaughan T M. Guest editorial brain-computer interface technology: A review of the second international meeting [J]. IEEE Transaction on Neural System and Rehabilitation Engineering,2003,11 (2) :94 - 109.
  • 9F Cincotti, D Mattia, C Babiloni. The use of EEG modifications due to motor imagery for brain-computer interfaces[J] .IEEE Transaction on Neural Systems and Rehabilitation Engineering, 2003, 11 (2): 131 -133.
  • 10Sutter E E.The brain response interface: communication through visually-induced electrical brain response[J]. J Microcomput Appl, 1992,15:31 -45.

共引文献74

同被引文献23

  • 1HUGHES M A. Engineering brain-computer interfaces :past,present and future [ J ]. Journal of neurosurgicalsciences,2014,58(2) : 117-123.
  • 2KHUSHABA R N, KODAGODA S,LAL S,et al. Re-search on intelligent wheelchair obstacle avoidance basedon Adaboost [ J ]. Applied Mechanics and Materials,2013, 312: 685-689.
  • 3RAFIEE J,RAFIEE M A,PRAUSE N,et al. Wavelet ba-sis functions in biomedical signal processing [ J ]. ExpertSystems with Applications,2011,38(5) ;6190-6201.
  • 4PAN Y H, WANG Y H, LIANG S F, et al. Fast compu-tation of sample entropy and approximate entropy in bio-medicine [J ]. Computer methods and programs in bio-medicine, 2011,104(3) : 382-396.
  • 5JIE X,CAO R,LI L. Emotion recognition based on thesample entropy of EEG [ J ]. Bio-medical materials andengineering, 2014,24(1): 1185-1192.
  • 6DAVIES S R H, JAMES C J. Novel use of EmpiricalMode Decomposition in single-trial classification of motorimagery for use in brain-computer interfaces [ C ]//Engi-neering in Medicine and Biology Society ( EMBC),201335th Annual International Conference of the IEEE. Japan :IEEE Xplore and Medline/PubMed,2013 :5610-5613.
  • 7SWEENEY-REED C M, NASUTO S J. A novel approachto the detection of synchronisation in EEG based on em-pirical mode decomposition [ J ]. Journal of computationalneuroscience, 2007 , 23( 1 ) ; 79-111.
  • 8RILLING G, FLANDRIN P, GONCALVeS P. On Empir-ical Mode Decomposition and Its Algorithms[ C]//IEEE-EURASIP Workshop on Nonlinear Signal and Image Pro-cessing. New York: IEEE,2003(3) : 8-11.
  • 9REHMAN N, MANDIC D P. Multivariate empirical modedecomposition [ J ]. Proceedings of the Royal Society AMathematical Physical and Engineering Science, 2010,466(2117) :1291-1302.
  • 10FORMAGGIO E,STORTI S F,GALAZZO I B,et al. Mod-ulation of event-related desynchronization in robot-assis-ted hand performance : brain oscillatory changes in active,passive and imagined movements [ J]. Journal of Neuro-engineering & Rehabilitation,2013,24( 1) :80-128.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部