期刊文献+

基于频繁子图挖掘的典型零件结构获取方法 被引量:2

A Typical Part Structure Acquisition Method based on Frequent Subgraph Mining
下载PDF
导出
摘要 典型零件结构是产品的隐性设计知识,用于企业零件资源聚类和检索。为了从零件库中获取典型零件结构,提出基于频繁子图挖掘的典型零件结构获取方法。从基于特征的三维零件模型中提取和筛选特征关系,并建立其有向特征关系图;由海量三维零件模型的有向特征关系图构成有向特征关系图库;利用Apriori频繁子图挖掘算法对有向特征关系图库实施频繁子图挖掘;通过频繁子图与零件库之间映射关系获取典型零件结构。实例验证了该方法的可行性。 Typical part structure is a kind of tacit knowledge in product design,and was applied to parts clustering part retrieval and etc.In order to acquire typical part structure from similar parts,a novel method based on frequent subgraph mining was proposed Firstly feature relations are abstracted and selected from feature-based 3D part model,and directed feature relationship graph(DFRG) was constructed according to the feature relations,and massive DFRGs comprise the DFRG base.Secondly,an Apriori-based algorithm was designed to mine frequent subgraphs from the DFRG base Thirdly the part structures corresponding to subsequent subgraphs mined were acquired from 3D part base and all these part structures were typical part structure.Finally the feasibility of proposed method was verified by an application example.
出处 《组合机床与自动化加工技术》 北大核心 2011年第11期29-33,37,共6页 Modular Machine Tool & Automatic Manufacturing Technique
基金 辽宁省博士科研启动基金(20101078) 国家科技支撑计划(2006BAA01A03)
关键词 典型零件结构 数据挖掘 频繁子图 三维零件模型 APRIORI 有向特征关系图 typical part structure data mining frequent subgraph 3D part model Apriori directed feature relation graph
  • 相关文献

参考文献11

  • 1Polanyi M. Personal knowledge: Towards a post-critical phi- losophy[ M ] , London : Routledge, 1958.
  • 2罗仕鉴,潘云鹤,朱上上.产品设计中基于图解思维的隐性知识表达[J].机械工程学报,2007,43(6):93-98. 被引量:37
  • 3祁国宁,苏宝华,顾新建,韩永生,陈俊.产品标准化与规范化技术的研究[J].中国机械工程,2000,11(5):525-527. 被引量:10
  • 4Shah J. J, Miintylii M. Parametric and feature-based CAD/ CAM--Concepts, Techniques and Applications [ M ]. New- York: John Wiley & Sons, 1995.
  • 5Fayyad U, Piatetsky-Shapiro G, Smyth P. KDD process for extracting useful knowledge from volumes of data[ J]. Com- munications of the ACM, 1996, 39 ( 11 ) : 27 - 34.
  • 6Agrawal R, Imielinski T, Swami A. Mining associations be- tween sets of items in large databases [ C ]//Proc. of the ACM SIGMOD Conf. on Management of Data, Washington, DC, 1993:207 -216.
  • 7Agrawal R, Srikant R. Mining sequential patterns [ C ]// Proceedings of the l lth IEEE International Conference on Data Engineering ( ICDE' 95), Taipei, 1995 : 3 - 14.
  • 8Han J, Pei J, Yin Y. Mining frequent patterns without can- didate generation [ C ]//Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data ( SIGMOD' 2000) , Dallas, 2000 : 1 - 12.
  • 9lnokuchi A. , Washio T. , Motoda H. An apriori-based algo- rithm for mining frequent substructures from graph data [ C]//Proc. of the 4th European Conf. on Principles and Practice of Data Mining and Knowledge discovery ( PKDD' 2000), Lyon, 2000:13-23.
  • 10Kuramochi M, Karypis G. Frequent subgraph discovery [ C]//ICDM'2001San Jose, USA, 2001:313 -320.

二级参考文献16

  • 1黄荣怀,郑兰琴.隐性知识及其相关研究[J].开放教育研究,2004,10(6):49-52. 被引量:60
  • 2罗仕鉴,朱上上.用户和设计师的产品造型感知意象[J].机械工程学报,2005,41(10):28-34. 被引量:74
  • 3POLANYI M.Personal knowledge:Towards a post-critical philosophy[M].London:Routledge,1958.
  • 4OSGOOD C E,SUCI C J,TANNENBAUM P H.The measurement of meaning[M].Urbana:University of Illinois Press.1957:76-124.
  • 5NAGAMACHI M.Kansei engineering:A new ergonomic consumer-oriented technology for product development[J].International Journal of Industrial Ergonomics,1995,15:3-11
  • 6ERICSSON K A,SIMON H A.Protocol analysis:verbal reports as data (second edition)[M].Cambridge:MIT Press.1993:261-380.
  • 7FERGUSON E S.Engineering and the mind's eye[M].Cambridge:The MIT Press.1992.
  • 8PAUL L.Graphic thinking for architects and designers[M].New York:John Wiley & Sons Publishers.2000.
  • 9GOEL V.Sketches of thought[M].Cambridge:The MIT Press.1995.
  • 10RODGERS P A,GREEN G,MCGOWN A.Using concept sketches to track design progress[J].Design Studies,2000,21(5):451-464.

共引文献45

同被引文献23

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部