期刊文献+

基于广义Hille引理及扰动想法之下的一种非参数回归方法

Nonparametric regression using generalized Hille's Lemma and perturbation
下载PDF
导出
摘要 近几十年来,非参数回归的研究方兴未艾.针对Fan(1992,1993,2003)局部核函数法的2个缺陷,该文基于广Hille引理及扰动思想提出了一种新的回归方法,新的回归估计量具有逐点一致性及最优渐进均方误差.该文还利用CV技术及ISE标准对该回归估计的光滑参数进行最优筛选,模拟结果表明:与Fan(1992,1993,2003)中的方法相比,在大样本下该文所提出回归方法有更佳估计效果. Based on a generalization of Hille’s lemma and an idea of a perturbation,this paper proposes a new regression estimation.The theoretical Point-wise consistency and asymptotic MSE(Mean Squared Error) are derived.The CV(cross-validation) selection technique and ISE(Integrated Squared Error) criteria are applied for the optimal value of smoothing parameter.The simulation results show that the new estimator in large sample has superiority,comparing with Fan(1992,1993, 2003)’s established local kernel estimation.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2011年第3期253-264,共12页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 加拿大政府自然科学工程基金(Canadian NSERC Discovery 2006 to 2009)
关键词 广义Hille引理 扰动 回归 光滑参数 模拟 Hille’s lemma; kernel; smoothing parameter; regression; simulation
  • 相关文献

参考文献14

  • 1Fan J, Gijbels I. Variable bandwidth and local regression smoothers[J]. The Annals of Statistics, 1992, 20(4): 2008-2036.
  • 2Fan J, Gijbels I. Local polynomial modeling and its applications[M]. Boca Raton: CRC Press, 2003.
  • 3Fan J. Local linear regression smoothers and their minimax efficiencies[J]. Annals of Statistics, 1993, 21: 196216.
  • 4H/irdle W. Applied Nonparametric Regression[M]. Cambridge: Cambridge University Press, p127, 1990.
  • 5Hardle W. Smoothing Techniques: with Implementation in S[M]. New York: Springer-Verlag, 1991.
  • 6Nadaraya, E. A. On Estimating Regression[J]. Theory of Probability and its Applications, 1964, 9(1): 141-142.
  • 7Chen S. Probability density function estimation using Gamma kernels[J]. Annuals of the Institute of Statistical Mathematics, 2000, 52: 471-480.
  • 8Chen, S. Local Linear Smoothers Using Asymmetric Kernels[J]. Annuals of the Institute of Statistical Mathematics, 2002, 54: 312-323.
  • 9Chaubey Y P, Sen A, Sen P K. A new smooth density estimator for non-negative random variables[R]. 2007.
  • 10Brown B M, Chen S. Beta Bernstein smoothing for regression curves with compact supports[J]. Scand J Statist, 1999, 26: 47-59.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部