期刊文献+

N+M维Lotka—Volterra捕食—竞争时滞系统的渐近性 被引量:1

Asmptotic behavior of N+M dimensions Lotka-Volterra predator-competition delay system
下载PDF
导出
摘要 研究了N+M维Lotka—Volterra捕食—竞争时滞系统的持久性和全局渐近稳定性,分别利用比较原理和构造Lyapunov函数方法得到了系统持久生存与全局渐近稳定性的充分条件,举例说明定理的可行性,且利用matlab绘出图像加以验证. N+M dimension nonautonomous lotka-volterra predator-competition delay system was investigated,sufficient conditions were derived for uniform persistence of this by using the comparison;when the system was a periodic system,sufficient conditions were obtained that guarantee the existence,uniqueness and global attractivity of the positive periodic solution by applying the Brouwer fixed theorem and the method of constructing Lyapunov function,theorems were realized by giving an example and picture was drawn by using software of matlab.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2011年第6期24-29,共6页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(60671063 10071048) 河北省教育厅科学研究基金资助项目(Z2003316)
关键词 捕食—竞争时滞系统 LYAPUNOV函数 持久生存 全局渐近稳定性 predator-competition delay system Lyapunov function persistence global asymptotic stability
  • 相关文献

参考文献12

  • 1Ahmad S. On the nonautonomous volterra-lotka competitoon equations [ J ]. Proc Am Math Soc, 1993,117 (3) : 199- 204.
  • 2Ahmad S, Lazer A C. Necessary and sufficient average growth in a volterra-lotka system [ J ]. Nonlinear Anal, 1998,34 (2) :191-228.
  • 3Ahmad S, Lazer A C. Average conditions for global asymptotic stability in a nonautonomous voherra-lotka system [ J ]. Nonlincar Anal ,2000,40 ( 1 ) :37-49.
  • 4Gopalsamy K. Exchange of a wquilibria in two lotka-voherra competition models[ J]. Aust Math Soc Ser, 1952, 24 B (2) :160-170.
  • 5Zheng J, Han M, Li G. The persistence in a lotka-voherra competition systems with impulsive [ J ]. Chaos, Solltion Fractals, 2005,24 (2) : 1105-1117.
  • 6Fan M, Kuang Y. Dynamics of a nonautonomous predator-prey system with the beddington-deangelis functional response[J]. J Math Anal Appl,2004,295 ( 2 ) :15-39.
  • 7Zhen J, Ma Z, Han M. The existence of periodic solutions of the n- species lotka-volterra competition system with impulsive [ J ]. Chaos, Solitorts Fractals, 2004,22 ( 1 ) : 1139-48.
  • 8Fan H, Wang Z. Existence and global attractivity of positive periodic solution for delay Lotka-Voherra competition patch system with stocking[J]. J Math Anal Appl,2004,293(4) :190-209.
  • 9Yang P, Xu R. Global attractivity of a the periodic lotka-voherra system [ J ]. J Math Anal Appl, 1999,233 (4) : 1221- 1232.
  • 10Xia Y H, Chen F D, Chen A P. Existence and global attractivity of an almost periodic ecological model[ J]. Applied Mathematics and Computation,2004,157 (3):449-475.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部