期刊文献+

一种CT医学图像分割新算法 被引量:2

A Novel Algorithm of CT Medical Image Segmentation
下载PDF
导出
摘要 针对临床辅助诊断的需要,提出了一种结合传统分水岭算法和新型核聚类算法的CT医学图像分割新算法。首先,通过分水岭变换,CT图被分割成不同的小区域。然后,根据改进的KFCM算法,利用Mercer核将各个小区域的平均灰度值映射到高维特征空间,使得原来在分水岭算法分割图中未显示出来的特征显现出来。通过此方法,相较于传统核聚类(KFCM)算法,我们可实现更准确的聚类,并有效解决分水岭算法分割CT医学图像的过分割问题,因此能取得更好的分割效果。实验结果显示,本文方法能够很好分割腹腔CT图,获得更清晰的分割图像。 A novel method of CT image segmentation is presented for the need of computer-aided clinical diagnosis,which combines the conventional watershed with newer kernel-clustering algorithm.A CT image was first segmented into different small areas using watershed transform,and then,with an improved kernel-clustering algorithm,the mercer-kernel of WKFCM was used to map the average gray value of each small area of the segmented image into a high-dimensional feature space,making features not displayed in the conventional algorithm outstanding.In this way,more accurate clustering was achieved as compared with the conventional kernel fuzzy c-means(KFCM) clustering algorithm,and the problem of over-segmentation effectively solved which had dogged the watershed transform in segmenting CT images.Experimental results in segmenting abdominal CT images demonstrated satisfactory improvement of image quality.
作者 刘金清 陈锟
出处 《微计算机应用》 2011年第10期7-12,共6页 Microcomputer Applications
基金 福建省自然科学基金资助项目(2010J01327)
关键词 分水岭算法 Mercer核 平均灰度值 WKFCM算法 聚类 CT图像分割 Watershed algorithm Mercer-kernel Average gray value WKFCM algorithm Clustering CT image segmentation
  • 相关文献

参考文献10

二级参考文献55

  • 1伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 2赵晨光,宋利伟,庄天戈.基于分水岭区域差异性的多级图像分割[J].上海交通大学学报,2004,38(9):1489-1491. 被引量:15
  • 3董旭,魏振军.一种加权欧氏距离聚类方法[J].信息工程大学学报,2005,6(1):23-25. 被引量:32
  • 4王国胜.核函数的性质及其构造方法[J].计算机科学,2006,33(6):172-174. 被引量:52
  • 5Ahmed M N,Yamany S M,Mohamed N A.Bias field estimation and adaptive segmentation of MRI data using modified fuzzy C- means algorithm[J].IEEE Trans Med Imaging, 2002, 21:193-199.
  • 6Chuang K S,Tzeng H L,Chen S,et al.Fuzzy c-means clustering with spatial information for image segmentation[J].Comput Med Imag Graphics, 2006,30: 9-15.
  • 7Cai Wei-ling,Chen Song-can,Zhang Dao-qiang.Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation[J].Pattern Recognition,2007,40:825-838.
  • 8Pham D L.Spatial models for fuzzy clustering [J].Comput Vis Imag Understand, 2001,84 : 285-297.
  • 9Zhang D Q,Chen S C.Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation[C]//Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi' an, 2003.
  • 10Bezdek J C.Pattern recognition with fuzzy objective function algorithms[J].SIAM Review, 1983,25(3) :442.

共引文献232

同被引文献24

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部