期刊文献+

不同条件下香蕉幼苗对环境羟自由基水平的影响 被引量:1

Effect of Banana Seedlings on Hydroxyl Radical Content in Ambient Air under Different Environmental Conditions
下载PDF
导出
摘要 在人工可控环境中,以香蕉幼苗在不同光强、不同温度、不同酸碱度条件下光系统Ⅱ叶绿素荧光参数的变化衡量香蕉幼苗光合特性的变化,同时测量培养环境中羟自由基水平以评价植物生长对环境羟自由基水平的影响。结果显示:香蕉幼苗生长的环境中羟自由基水平明显高于没有植物生长的同样环境,表明植物的生长可提高环境的羟自由基水平。环境条件变化引起香蕉幼苗叶片光系统Ⅱ叶绿素荧光参数发生明显变化,高光强、极端温度和极端酸碱条件下的叶绿素荧光参数变化显示幼苗不同程度的光抑制,同时也伴随环境中羟自由基水平的升高,二者具有一定程度的相关性。本研究证明了大气中羟自由基水平受植物生长状态的影响,指出植物生长状态与环境中羟自由基水平的密切关系,为研究大气中羟自由基水平的演变机制提供了依据。 Chlorophyll fluorescence and hydroxyl radical(·OH) content in ambient air were measured in banana seedlings growing in closed incubators in which light intensity,temperature,acidity and alkalinity were controlled.The correlation between changes in photosynthetic characters and ·OH content in ambient air was studied under different environmental conditions.Results showed that the level of ·OH was obviously higher in the incubator growing banana seedlings than in the incubators without growing plants,which indicated that the level of ·OH in ambient air could be improved by growing plants in it.Chlorophyll fluorescence parameters changed obviously under different culture conditions.Stronger light intensity,extreme cold and hot temperature,excessive acidity or alkalinity indicating different degrees of photo-inhibition in different culture conditions,suggesting a strong correlation between the level of photo-inhibition and ·OH content in ambient air.We also found that the level of ·OH increased with the degree of photo-inhibition.The affect of the plants on the level of ·OH was confirmed,and the strong correlation between the level of ·OH and the growth status of the plants was demonstrated.Further studies on the evolvement mechanism for ·OH in the atmosphere are recommended.
出处 《植物科学学报》 CAS CSCD 北大核心 2011年第5期625-630,共6页 Plant Science Journal
基金 广东省自然科学基金资助项目(06021574 04300677) 广东省科技计划项目(2008B030301245)
关键词 植物 香蕉 光合作用 羟自由基 大气环境 Plants Banana Photosynthesis Hydroxyl radical Atmospheric environment
  • 相关文献

参考文献21

  • 1LIU Bin WANG Hui-xiang.Determination of atmospheric hydroxyl radical by HPLC coupled with electrochemical detection[J].Journal of Environmental Sciences,2008,20(1):28-32. 被引量:7
  • 2刘冬莲,黄艳斌.·OH的形成机理及在水处理中的应用[J].环境科学与技术,2003,26(2):44-46. 被引量:45
  • 3柯德森,王爱国,孙谷畴,董良峰.The Effect of Active Oxygen on the Activity of ACC Synthase Induced by Exogenous IAA[J].Acta Botanica Sinica,2002,44(5):551-556. 被引量:11
  • 4任信荣,邵可声,缪国芳,唐孝炎.大气OH自由基浓度的测定[J].中国环境科学,2001,21(2):115-118. 被引量:24
  • 5Maezono T,Tokumura M,Sekine M,Kawase Y.Hy-droxyl radical concentration profile in photo-Fentonoxidation process:Generation and consumption ofhydroxyl radicals during the discoloration of azo-dye OrangeⅡ. Chemosphere . 2011
  • 6Nilkens M,Kress E,Lambrev P,Miloslavina Y,Müller M,Holzwarth A R,Jahns P.Identification ofa slowly inducible zeaxanthin-dependent compo-nent of non-photochemical quenching of chloro-phyll fluorescence generated under steady-stateconditions in Arabidopsis. Biochimica et Biophysica Acta . 2010
  • 7Ebenhh O,Houwaart T,Lokstein H,Schlede S,Tirok K.A minimal mathematical model of nonpho-tochemical quenching of chlorophyll fluorescence. Biosystems Engineering . 2011
  • 8Greenwald R A.CRC handbook of methods for oxy-gen radical research. . 1987
  • 9Prinn R G.Ozone,Hydroxyl Radical and OxidativeCapacity. . 2003
  • 10Sjostedta S J,Hueya G L,Tannera D J,Peischla HJ,Chenb G,Dibbc J E,Leferd B,Hutterlie M A,Beyersdorf A J,Blakeg N J,Blakeg D R,SueperhD T R,Burkharti J,Stohlj A.Observations of hy-droxyl and the sum of peroxy radicals at Summit,Greenland during summer 2003. Atmos Envi-ron . 2007

二级参考文献24

  • 1柯德森 王爱国 等.The relationship between active oxygen and the activity of ethylene-forming enzyme in ripening banana fruit[J].Acta Phytophysiol Sin:植物生理学报,1998,24:313-319.
  • 2柯德森 王爱国 等.The effect of activated oxygen during the production of endogenous ethylene induced bhy exogenous ethylene[J].Acta Phytophysiol Sin:植物生理学报,1997,23:67-72.
  • 3桥本和仁 藤岛昭.Titanium Dioxide:New Uses Through Nano-Technology[J].NATURE,1997,88(8):431-432.
  • 4[1]Comes F J.Recycling in the earth's atmosphere: the OH radical?its importance for the chemistry of the atmosphere and the determination of its concentration [J]. Angew.Chem.Int.Ed.Engl., 1994,33:1816-1826.
  • 5[2]George L A,Hard T M,O'Brien R J.Measurement of free radicals OH and HO2 in Los Angeles smog [J].J.Geophys.Res.,1999, 104(D9):11643-11655.
  • 6[3]Tanner D J,Jefferson A,Eisele F L.Selected ion chemical ionization mass spectrometric measurement of OH [J]. J.Goephys.Res., 1997,102(D5):6415-6425.
  • 7[4]Stocks N J,Tabner B J,Hewitt C N.The determination of hydroxyl radical concentrations in environmental chambers using electron spin resonance [J]. Chemosphere,1994,28(5):999-1008.
  • 8[5]Felton C C,Sheppard J C,Campcell M J.The radiochemical hydroxyl radical measurement method [J]. Environ.Sci.& Technol.,1990,24:1841-1847.
  • 9[6]Oturan M A,Pinson J.Hydroxylation by electrochemically generated OH radicals mono- and polyhydroxylation of benzoic acid: poducts and isomers' distribution [J]. J.Phys.Chem.,1995,99: 13948-13954.
  • 10[7]Bielski B H J.Reactivity of HO2/O2- radicals in aqueous solution [J]. J.Phys.Chem.Ref.Data,1985,14:1041-1100.

共引文献81

同被引文献18

  • 1YANG M, JONSSON M. Surface reactivity of hydroxyl radicalsformed upon catalytic decomposition of H2O2 on ZrO2 [J]. J Mol CatalA: Chem, 2015, 400: 49–55. doi: 10.1016/j.molcata.2015.02.002.
  • 2FANG G D, ZHU C Y, DIONYSIOU D D, et al. Mechanism ofhydroxyl radical generation from biochar suspensions: Implications todiethyl phthalate degradation [J]. Bioresour Techn, 2015, 176: 210–217.doi: 10.1016/j.biortech.2014.11.032.
  • 3BIARD P F, COUVERT A, RENNER C, et al. Intensification ofvolatile organic compounds mass transfer in a compact scrubber usingthe O3/H2O2 advanced oxidation process: Kinetic study and hydroxylradical tracking [J]. Chemosphere, 2012, 85(7): 1122–1129. doi:10.1016/j.chemosphere.2011.07.050.
  • 4MAEZONO T, TOKUMURA M, SEKINE M, et al. Hydroxyl radicalconcentration profile in photo-Fenton oxidation process: Generationand consumption of hydroxyl radicals during the discoloration ofazo-dye Orange II [J]. Chemosphere, 2011, 82(10): 1422–1430. doi: 10.1016/j.chemosphere.2010.11.052.
  • 5LAI C Y, LIU Y C, MA J Z, et al. Degradation kinetics of levoglucosaninitiated by hydroxyl radical under different environmental conditions[J]. Atmos Environ, 2014, 91: 32–39. doi: 10.1016/j.atmosenv.2014.03.054.
  • 6HELLACK B, QUASS U, BEUCK H, et al. Elemental compositionand radical formation potency of PM10 at an urban background stationin Germany in relation to origin of air masses [J]. Atmos Environ, 2015,105: 1–6. doi: 10.1016/j.atmosenv.2015.01.033.
  • 7PRICE D J, CLARK C H, TANG X C, et al. Proposed chemicalmechanisms leading to secondary organic aerosol in the reactions ofaliphatic amines with hydroxyl and nitrate radicals [J]. Atmos Environ,2014, 96: 135–144. doi: 10.1016/j.atmosenv.2014.07.035.
  • 8LI C, YANG X H, LI X H, et al. Development of a model forpredicting hydroxyl radical reaction rate constants of organic chemicalsat different temperatures [J]. Chemosphere, 2014, 95: 613–618. doi:10.1016/j.chemosphere.2013.10.020.
  • 9CHIWA M, HIGASHI N, OTSUKI K, et al. Sources of hydroxyl radicalin headwater streams from nitrogen-saturated forest [J]. Chemosphere,2015, 119: 1386–1390. doi: 10.1016/j.chemosphere.2014.02.046.
  • 10FLEXAS J, BADGER M, CHOW W S, et al. Analysis of the relativeincrease in photosynthetic O2 uptake when photosynthesis in grapevineleaves is inhibited following low night temperatures and/or water stress[J]. Plant Physiol, 1999, 121(2): 675–684. doi: 10.1104/pp.121.2.675.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部