期刊文献+

小波包-BP神经网络结合的热轧带钢缺陷识别

Defect Recognition of Hot Rolled Strip Based on Wavelet Packet and BP Network
下载PDF
导出
摘要 基于热轧带钢的表面往往存在着很多缺陷,目前的识别方法存在着误识率高的问题,提出一种基于小波包分解的提取图像特征的方法,将提取的图像的能量特征向量输入BP神经网络分类器,对麻点、夹杂和结疤3种缺陷进行识别,仿真结果表明这种方法有着较高的识别率,并具有稳健的抗噪性和良好的扩展性。 As the current recognition methods have high misclassification rate for the defects on the surface of hot iolled steel strip, a new method of extracting image feature is proposed in view of wavelet packet decomposition. Through inputting the energy feature of the extracted image into BP neural network classifier, three defects of pit,inclusion and scar can be identified. Simulation results show that this method has high recognition rate,robust noise immunity and good scalability.
作者 董振虎 王焱
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2012年第1期41-44,共4页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金(60973042) 山东省自然科学基金(Y2008G20 Y2008F61)
关键词 小波包分析 BP神经网络 热轧带钢表面缺陷 analysis of wavelet packet BP neural network surface defect recognition of hot rolled strip
  • 相关文献

参考文献7

二级参考文献38

  • 1张涛,杨志标,黄爱民.一种改进的遥感图像分形维数提取算法[J].军械工程学院学报,2006,18(5):61-65. 被引量:7
  • 2梁治国,徐科,徐金梧.基于线型激光的钢板表面缺陷三维检测技术[J].北京科技大学学报,2004,26(6):662-665. 被引量:6
  • 3宋强,徐科,徐金梧.基于结构谱的中厚板表面缺陷识别方法[J].北京科技大学学报,2007,29(3):342-345. 被引量:7
  • 4胡昌华 张军波 等.基于MATLAB的系统分析与设计[M].西安:西安电子科技大学出版社,1999..
  • 5[1]Crouse M,Nowak R,Baraniuk R.Wavelet 2 based statistical signal processing using hidden markov models[J].IEEE Trans Signal Processing,1998,46 (4),886-902.
  • 6[2]Do M N,Vetterli M.Orthonormal finite ridgelet transform for image compression[A].Proc IEEE Int Conf Image Processing (ICIP)[C],2000.
  • 7[3]Liu C,Wechsler H.A Gabor feature classifier for face recognition[A].Eighth IEEE International Conference on Computer Vision[C],2001:7-14.
  • 8[4]Liu C,Wechsler H.Face recognition using independent gabor wavelet features[A].Proceedings of the Third International Conference on Audio 2 and Video 2 Based Biometric Person Authentication[C],2001.
  • 9[5]Rychetsky M,Ortmann S,Ullmann M,et al.Accelerated training of support vector machines[A].LJCNNp99,International Joint Conference on Neural Networks[C],1999:998 -1003.
  • 10[6]Chapelle O,Haffiner P,Vapnik V N.Support vector machines for histogram based image classification[J].IEEE Trans on Neural Networks,1999,10 (5):1055 -1064.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部