摘要
Two types of pulse forming lines for dielectric wall accelerator (DWA) were investigated preliminarily. By simulation with CST Microwave Studio, the results indicate the pulse forming process, which can help to understand the voltage wave transmission process and optimize the line parameters. Furthermore, the principle of the pulse forming process was proved by experiments and some excellent pulse waveforms were obtained. During the experiments, the Blumlein line and zero integral pulse (ZIP) forming line, constructed with aluminum foil, poly plate and air gap self-closing switch, were tested. The full width at half maximum (FWHM) of the waveform is 16 nanoseconds (BL) and 17 nanoseconds (ZIP line), and the formed pulse voltage amplitude is 5 kV (BL) and +2.2 kV/-1.6 kV (ZIP line). The experiments result coincides well with the simulation.
Two types of pulse forming lines for dielectric wall accelerator (DWA) were investigated preliminarily. By simulation with CST Microwave Studio, the results indicate the pulse forming process, which can help to understand the voltage wave transmission process and optimize the line parameters. Furthermore, the principle of the pulse forming process was proved by experiments and some excellent pulse waveforms were obtained. During the experiments, the Blumlein line and zero integral pulse (ZIP) forming line, constructed with aluminum foil, poly plate and air gap self-closing switch, were tested. The full width at half maximum (FWHM) of the waveform is 16 nanoseconds (BL) and 17 nanoseconds (ZIP line), and the formed pulse voltage amplitude is 5 kV (BL) and +2.2 kV/-1.6 kV (ZIP line). The experiments result coincides well with the simulation.
基金
Supported by National Natural Science Foundation of China(10921504)