7Portnoy L,Eskin E,Stolfo S J.Intrusion detection with unlabeled data using clustering. Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001) . 2001
8Basu S,Banerjee A,Mooney RJ.Semi-supervised clustering by seeding. Proceedings of 19th International Conference on Machine Learning (ICML-2002) . 2002
9Abe N,Mamitsuka H.Query learning strategies using boosting and bagging. Proceedings of the Fifteenth International Conference on Machine Learning (ICML-98) . 1998
2[1]Mark Lauer, How Much is Enough? Data Requirements for Statistical NLP[J/OL]. arXiv: cmp lg/9509001.
3[2]Nigam K, McCallum AK, Thrun S, e al. Text classification from labeled and unlabeled documents using EM[J]. Machine Learning, 2000, 39(2/3):103-134.
4[3]Blum A, Mitchell T. Combining labeled and unlabeled data with co training[A]. Proceedings of the 11th COLT[C], 1998.92-100.
5[4]Collins M, Singer Y. Unsupervised models for named entity classification[A]. Proceedings of the 1999 Joint SIGDAT Conference on Empirical methods in NLP and Very Large Corpora[C]. College Park, MD,1999.90-99.
6[5]Freund Y, Schapire RE. Experiments with a new boosting algorithm[A]. machine Learning: Proceedings of the Thirteenth International Conference[C], 1996. 148-156.
7[6]Yarowsky D. Unsupervised word sense disambiguation rivaling supervised methods[A]. Proceedings of the 33rd Annual meeting of the Association for Computational Linguistics[C]. 1995. 189-196.
8[7]Abney, Steven, Bootstrapping[A]. Proceedings of 40th Annualmeeting of the Association for Computational Linguistics(ACL 2002)[C]. Philadelphia, 2002.
9[8]Nigam K, Ghani R. Analyzing the effectiveness and applicability of co training[A]. Proc. Of Ninth International Conference on Information and Knowledge management(CIKM)[C], 2000b.
10[9]Cohn D, Atlas L, Ladner R. Improving generalization with active learning[J].Machine Learning, 1994,15(2), 201-221.