期刊文献+

基于主动学习的半监督聚类入侵检测算法

下载PDF
导出
摘要 针对基于监督学习入侵检测算法中所面临的标记大量数据的问题,本文提出了一种基于主动学习的半监督聚类入侵检测算法。主动学习策略查询网络中未标记数据与标记数据的约束关系,对标记数据可以快速获得k个不相交的非空近邻集,很大程度上改进了算法的性能。实验结果表明了算法的可行性及有效性。
作者 胡翰
出处 《无线互联科技》 2011年第10期27-28,共2页 Wireless Internet Technology
  • 相关文献

参考文献9

二级参考文献36

  • 1俞研,黄皓.一种半聚类的异常入侵检测算法[J].计算机应用,2006,26(7):1640-1642. 被引量:17
  • 2[1]Mark Lauer, How Much is Enough? Data Requirements for Statistical NLP[J/OL]. arXiv: cmp lg/9509001.
  • 3[2]Nigam K, McCallum AK, Thrun S, e al. Text classification from labeled and unlabeled documents using EM[J]. Machine Learning, 2000, 39(2/3):103-134.
  • 4[3]Blum A, Mitchell T. Combining labeled and unlabeled data with co training[A]. Proceedings of the 11th COLT[C], 1998.92-100.
  • 5[4]Collins M, Singer Y. Unsupervised models for named entity classification[A]. Proceedings of the 1999 Joint SIGDAT Conference on Empirical methods in NLP and Very Large Corpora[C]. College Park, MD,1999.90-99.
  • 6[5]Freund Y, Schapire RE. Experiments with a new boosting algorithm[A]. machine Learning: Proceedings of the Thirteenth International Conference[C], 1996. 148-156.
  • 7[6]Yarowsky D. Unsupervised word sense disambiguation rivaling supervised methods[A]. Proceedings of the 33rd Annual meeting of the Association for Computational Linguistics[C]. 1995. 189-196.
  • 8[7]Abney, Steven, Bootstrapping[A]. Proceedings of 40th Annualmeeting of the Association for Computational Linguistics(ACL 2002)[C]. Philadelphia, 2002.
  • 9[8]Nigam K, Ghani R. Analyzing the effectiveness and applicability of co training[A]. Proc. Of Ninth International Conference on Information and Knowledge management(CIKM)[C], 2000b.
  • 10[9]Cohn D, Atlas L, Ladner R. Improving generalization with active learning[J].Machine Learning, 1994,15(2), 201-221.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部