期刊文献+

一种提高过滤用户偏好精度的数据采集方法 被引量:3

A Method of Data Collecting to Improve the Precision of Filtering User Preference
原文传递
导出
摘要 采用数据挖掘技术中的关联分析和聚类方法,重点研究Web日志兴趣发现的理论和方法,指出普通日志记录方法的局限性,提出过滤用户偏好的定制Web日志方法,实验结果验证通过该方法采集的数据,可以发现隐藏在日志数据中的关联规则,同时找到相似用户的兴趣和偏好,并且能够提高过滤用户兴趣偏好的精度。 Using the methods of association analysis and clustering in the field of data mining, the paper focuses on the theories and methods of discovering user interests and points out the limitations of standard Web log. So it proposes a method of customized Web log in order to enhance the precision of user interests and preferences. The outcome of experiment shows that, by the method, Web log data hidden in the association rules as well as interests and preferences of similar users can be found, the precision of filtering user interest can be improved at the same time.
出处 《现代图书情报技术》 CSSCI 北大核心 2011年第11期31-37,共7页 New Technology of Library and Information Service
基金 河南省教育厅基金项目"高斯混合模型及其在图像处理中的应用"(项目编号:2011B520038) 郑州市科技局基金项目"基于高斯混合模型的图像分割算法研究"(项目编号:112PPTGY248-6)的研究成果之一
关键词 信息过滤 用户偏好 个性化推荐系统 数据采集 定制Web日志 Information filtering User preferences Personalization recommending system Data collecting Customized Web log
  • 相关文献

参考文献19

  • 1Denning P J. Electronic Junk [ J ]. Communications of the ACM, 1982, 25(3) :163 -165.
  • 2Etzioni O. The World Wide Web : Quagmire or Gold Mine [ J ]. Communications of the ACM, 1996,39 ( 11 ) :65 - 68.
  • 3Mobasher B. Data Mining for Web Personalization [ J ]. Lecture Notes in Computer Science, 2007: 90- 135.
  • 4Asunka S, Chae H S, Hughes B, et al. Understanding Academic Information Seeking Habits Through Analysis of Web Server Log Files: The Case of the Teachers College Library Website[J]. The Journal of Academic Librarianship, 2009,35 ( 1 ) : 33 - 45.
  • 5Breeding M. Analyzing Web Server Logs to Improve a Site's Usage [ J ]. Computers in Libraries, 2005, 10 ( 25 ) : 26 - 29.
  • 6Apache Log Files Version 2.2[S/OL]. (2010 -01 -01 ). [2011 - 05 -08]. http://httpd, apache, org/docs/2.2/logs, html#other.
  • 7IIS Log File Format ( IIS 6. 0) [ S/OL]. (2010 -01 -01 ). [ 2010 -12 -16]. http://www, microsoft, com/technet/prodtechnol/ WindowsServer2003/Library/IIS/676400bc - 8969 - 4aa7 - 851 a -9319490a9bbb. mspx? mfr = true.
  • 8Han J. Conference Tutorial Notes : Data Mining Techniques [ C ]. In : Proceedings of ACM SIGMOD International Conference on Man- agement of Data ( SIGMOD' 96 ) , Montreal, Canada. 1996.
  • 9Discovering Hidden Value in Your Data Warehouse [ EB/OL ]. [2011 - 10 - 14 ]. http ://www. thearling, com/text/dmwhite/ dmwhite, htm.
  • 10Lu H, Setiono R, Liu H. Effective Data Mining Using Neural Networks[ J ]. IEEE Transactions on Knowledge and Data Engi- neering, 1996, 8 (6) : 957 -961.

二级参考文献6

共引文献8

同被引文献39

  • 1Google学术搜索[EB/OL].http://ieeexplore.ieee.org/xpls/abs-a11.jsp?arnumber=922473,2011-08-29.
  • 2Siemens, G. Learning and Knowledge Analytics-Knewton-the Future of Education? [EB/OL]. [2011 -04-17].http: // www. learninganalytics.net/? p = 126.
  • 3Haythornthwaite, C., & De Laat, M. (2010) . Socia Networks and Learning Networks: Using Social Network Perspectives to Underst and Social Learning [C]. Paper Presented at the ?th International Conference on Networked Learning, Aalborg, Denmark.
  • 4Piedra N, Chicaiza J A, L6pez J, et al. An architecture based on- linked data technologies for the integration and reuse of OER in MOOCs Context [J]. Open Praxis, 2014, 6 (2): 171- 187.
  • 5Course Profile App [EB/OL]. http: //apps. facebook, corn/course profiles/, 2014 - 03 - 11.
  • 6Library of Congress Online Catalog [ EB/OL]. http://catalog, loc. gov , 2014- 12- 04.
  • 7MELVYL University of California Libraries [ EB/OL]. http ://www. edlib, org/serviees/d/2d/melw1/, 2014 - 12 - 04.
  • 8Data. open.ae.uk [EB/OL]. http://Data, open.ae.uk , 2014 - 03 - 29.
  • 9Apabi数字资源平台[EB/OL].http:∥ref,1ib.apabi.corn/De.fault2.asp?lang:gb,2014-12-04.
  • 10超星发现[EB/OL].http:∥i.chaoxing.corn∥space/index.shtml,2015-10-19.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部