期刊文献+

基于协同过滤算法的高校图书馆图书推荐系统研究 被引量:40

Research of Personalized Book Recommender System of University Library Based on Collaborative Filter
原文传递
导出
摘要 针对当前高校图书馆主动式图书推荐服务存在的对服务对象信息需求挖掘、分析不足的问题,提出构建基于协同过滤算法的个性化图书推荐系统。通过引入读者专业、角色、学历、借阅记录等影响和反映读者信息需求的因素构建读者特征模型,基于该模型采用优化的协同过滤算法挖掘读者信息需求并产生个性化图书推荐信息,并通过实验证明该方法的有效性和实用性。 Aiming at the disadvantages of insufficient mining and analysis of readers' information needs existing in the active book recommendation service of university library, the paper brings forward a construction of personalized book recommender system based on collaborative filter. The system imports the factors of faculty, role, education and the readers' records of visiting the reading rooms to construct the reader' s characteristic model. By mining and analyzing the characteristic model which uses optimized collaboration filter algorithm, the system can produce the personalized book recommendation to reader. And the experiment proves that the system is efficient and practical.
作者 董坤
出处 《现代图书情报技术》 CSSCI 北大核心 2011年第11期44-47,共4页 New Technology of Library and Information Service
基金 中南民族大学中央高校基本科研业务费专项资金项目"图书馆个性化信息服务体系研究"(项目编号:CZQ10008)的研究成果之一
关键词 协同过滤 信息服务 数据挖掘 数据仓储 Collaborative filter Information service Data mining Data warehouse
  • 相关文献

参考文献5

  • 1熊拥军,陈春颖.基于关联挖掘技术的数字图书馆个性化推送服务[J].图书情报工作,2010,54(1):125-129. 被引量:27
  • 2Bresse J S, Heckerman D, Kadie C. Empirical Analysis of Predic- tive Algorithms for Collaborative Filtering [ C ]. In : Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco : Morgan Kaufmann, 1998:43 - 52.
  • 3Agrawal R,Imielinski T,Swami A. Mining Associations Between Sets of Items in Large Databases[ C ]. In:Proceedings of the ACM SIGMOD International Conference on Management of Date. 1993:207 -216.
  • 4常富洋,林鸿飞,许侃.基于用户向量扩展的协同推荐方法[J].情报学报,2010,29(4):688-694. 被引量:9
  • 5Sarwar B, Karypis G, Konstan J, et al. Item - based Collaborative Filtering Recommendation Algorithms [ C ]. In : Proceedings of the lOth International World Wide Web Conference. New York: ACM Press ,2001:285 - 295.

二级参考文献17

  • 1杨俊,兰宏勇.基于RSS的信息推送系统的设计和实现[J].计算机系统应用,2008,17(10):64-67. 被引量:5
  • 2白雪松,徐汝兴,郑巧英.数字图书馆的个性化推送服务[J].图书馆杂志,2005,24(9):25-28. 被引量:19
  • 3孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 4石岩.基于智能推送技术的个性化服务系统研究[J].现代情报,2006,26(10):146-148. 被引量:19
  • 5熊拥军.数据挖掘在数字图书馆个性化服务中的应用.湖南:中南大学,2005.
  • 6Goldberg D,Nichols D,Oki B M,et al.Using collaborative filtering to weave aninformation tapestry[J].Communications of the ACM,1992,35(12):61-70.
  • 7Resnick P,Iacovou N,Suchak M,et al.Grouplens:An open architecture for collaborative filtering of netnews[C] //Proc.of the ACM CSCW'94 Conf.on Computer-Supported Cooperative Work.Chapel Hill:ACM,1994:175-186.
  • 8Shardanand U,Maes P.Social information filtering:Algorithms for automating "Word of Mouth"[C] //Proc.of the ACM CHI'95 Conf.on Human Factors in Computing Systems.New York:ACM Press/Addison-Wesley Publishing Co.,1995:210-217.
  • 9Hill W,Stead L,Rosenstein M,et al.Recommending and evaluating choices in a virtual community of use[C] //Proc.of the CHI'95.New York:ACM Press/Addison-Wesley Publishing Co.,1995:194-201.
  • 10Breese J,Hecherman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C] //Proc.of the 14th Conf.on Uncertainty in Artificial Intelligence (UAI'98).San Francisco:Morgan Kaufmann Publishers,1998:43-52.

共引文献34

同被引文献459

引证文献40

二级引证文献257

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部