摘要
针对当前高校图书馆主动式图书推荐服务存在的对服务对象信息需求挖掘、分析不足的问题,提出构建基于协同过滤算法的个性化图书推荐系统。通过引入读者专业、角色、学历、借阅记录等影响和反映读者信息需求的因素构建读者特征模型,基于该模型采用优化的协同过滤算法挖掘读者信息需求并产生个性化图书推荐信息,并通过实验证明该方法的有效性和实用性。
Aiming at the disadvantages of insufficient mining and analysis of readers' information needs existing in the active book recommendation service of university library, the paper brings forward a construction of personalized book recommender system based on collaborative filter. The system imports the factors of faculty, role, education and the readers' records of visiting the reading rooms to construct the reader' s characteristic model. By mining and analyzing the characteristic model which uses optimized collaboration filter algorithm, the system can produce the personalized book recommendation to reader. And the experiment proves that the system is efficient and practical.
出处
《现代图书情报技术》
CSSCI
北大核心
2011年第11期44-47,共4页
New Technology of Library and Information Service
基金
中南民族大学中央高校基本科研业务费专项资金项目"图书馆个性化信息服务体系研究"(项目编号:CZQ10008)的研究成果之一
关键词
协同过滤
信息服务
数据挖掘
数据仓储
Collaborative filter Information service Data mining Data warehouse