摘要
为提高潮流算法在系统重负荷时的收敛特性,提出2种基于张量法的电力系统潮流计算新方法。方法 1在张量方程没有实数解的情况下采用最小二乘优化算法,获得其相应的张量修正量,从而使基于插值张量法的潮流计算具有更好的收敛性。方法 2为在极坐标下基于张量直接法的潮流计算方法;该方法通过直接计算潮流方程的二次微分,从而直接获得增量的二次项,使得基于张量法潮流计算的收敛性得到明显改善的同时,也大大加快了相应计算速度;其计算速度在系统轻负荷时,与牛顿法相差不多,但在重负荷时,其计算速度相对于牛顿法得到明显的提高,有时超过其30%。多个算例的计算结果表明,所提出的2种算法是有效的。
Two new approaches for power flow computation based on tensor method were presented in the paper in order to improve computation convergence properties for systems under heavy load.Method one used least squares optimization algorithm to obtain tensor increment when the real roots of tensor equation did not exist,which led to a better convergence.Method two adopted tensor direct calculation strategy in polar coordinates to achieve the quadratic of the increment by the direct calculation of the second derivative of power flow equations;therefore,its convergence and calculation speed were significantly improved;although its calculation speed was nearly the same as that of Newton method for light or normal load situation,it was obeviously faster than that at the heavy load situation,sometimes even 30% faster.The results of several examples demonstrate that the two methods proposed are valid.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2011年第34期113-119,共7页
Proceedings of the CSEE
基金
国家自然科学基金项目(51177107)~~
关键词
潮流计算
张量法
最小二乘优化算法
张量直接法
极坐标
power flow computation
tensor methods
least squares optimization algorithm
tensor direct calculation strategic
polar coordinates