期刊文献+

桁架尺寸优化微分演化算法 被引量:4

Differential Evolution Algorithm to Size the Optimization of Truss Structures
下载PDF
导出
摘要 为了解决带有应力约束和位移约束桁架结构的尺寸优化问题,将微分演化(Differential Evolution,DE)算法应用于桁架结构的尺寸优化设计.介绍了DE算法的基本原理及其进化策略,给出了桁架结构优化的数学模型.对几个经典问题进行了求解,并与其他优化算法进行了比较.数值结果表明了DE算法收敛特性好、稳定性高,可以有效地用于桁架结构的尺寸优化设计. This paper applied a DE strategy to solve the size optimization problems of truss structures with stress and displacement constraints.We presented the basic principle of the original DE algorithm in detail,and then introduced the mathematical model for truss optimization.Several classical problems were solved by using DE algorithm,and the results were compared with those using other optimization methods.Numerical examples have shown that the DE algorithm has good convergence and stability and can be applied to effectively size the optimization of truss structures.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期13-18,共6页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(50708076) 光华同济土木学院基金资助项目
关键词 结构 微分演化 桁架结构 尺寸优化 structure differential evolution truss structures size optimization
  • 相关文献

参考文献16

  • 1GALANTE M. Genetic algorithms as an approach to optimize real-world trusses [J]. International Journal for Numerical Methods in Engineering, 1996,39(3):361-382.
  • 2LAMBERTI L An ef{ieient simulated annealing algorithm for design optimization of truss structures [J]. Computers Structures,2008, 86z 1936-1953.
  • 3BLAND J A. Optimal structural design by ant colony optimi-zation[J]. Engineering Optimization,2001,33(4) :425-443.
  • 4LI L J, HUANG Z B, LIU F, et al. A heuristic particle swarm optimizer for optimization of pin connected structures [J]. Computers Structures, 2007, 85(7/8): 340-349.
  • 5STORN R,PRICE K. Differential evolution-a simple and ef- ficient adaptive scheme for global optimization over continuous spacesCJ']. Journal of Global Optimization, 1997,11(4) :341- 359.
  • 6VESTERSTROM J, THOMSEN R. A comparative study of differential evolution, particle swarm optimization, and evolu- tionary algorithms on numerical benchmark problems[J]. Evo- lutionary Computation, 2004,2 1980- 1987.
  • 7GONG Wen-yin, CAI Zhi-hua, ZHU Li. An efficient multi- objective differential evolution algorithm for engineering design [J]. Structural and Multidiseiplinary Optimization, 2009, 4 (2):137-157.
  • 8COELH O, SANTOS L D. Reliability-redundancy optimiza- tion by means of a chaotic differential evolution approach[J]. Chaos Solitons Fractals, 2009,41(2)..594-602.
  • 9WU Zhi-feng, HUANG Hou-kuan, YANG Bei, etal. Amodi- fled differential evolution algorithm with self-adaptive control parameters[C]//Proeeedings of 3rd International Conference on Intelligent System and Knowledge Engineering. ISKE, 2008:524- 527.
  • 10VIAN A. CHEGURY F A. Differential evolution applied to the design of a three-dimensional vehicular structure[C]//Pro- ceedings of the ASME International Design Engineering Tech- nical Conferences and Computers and Information in Engineer- ing Conference, 2008,6 (B) : 1321 - 1330.

同被引文献38

  • 1马少坤,于淼,崔皓东.子结构分析的基本原理和ANSYS软件的子结构分析方法[J].广西大学学报(自然科学版),2004,29(2):150-153. 被引量:29
  • 2白久林,杨乐,欧进萍.基于等损伤的钢框架结构抗震性能优化[J].工程力学,2015,32(6):76-83. 被引量:12
  • 3郝军,吴炜,杨栈.改进D-S算法在船舶汽轮机故障诊断中的应用研究[J].船海工程,2007,36(3):49-51. 被引量:4
  • 4张晓明,王航宇,黄达.基于D-S证据理论的多平台协同数据融合[J].计算机工程,2007,33(11):242-243. 被引量:6
  • 5COELLO C, CORTES N. Solving multi-objective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190.
  • 6JIAO L, GONG M, R H, etal. Clonal selection with immune dominance and energy based multi-objective optimization[C]// Proceedings of the Third International Conference on Evolutionary Multi-criterion Optimization. Berlin: Springer-Verlag, 2005: 474-489.
  • 7GONG M, JIAO L, DU H, etal. Multi-objective immune al- gorithm with non-dominated neighbor-based selecti0n[J]. Evolutionary Computation, 2008, 16(2):225-255.
  • 8DEB K, AGARWAL S, PRATAP A, et al. A (ast elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Trans- actions on Evolutionary Computation, 2002, 6(2) : 182- 197.
  • 9LUH G C, CHUEH C H. Multi-objective optimal design of truss structure with immune algorithm [J]. Computers Structures, 2004,82.. 829-844.
  • 10KOHONEN T. Self-organizing maps[M]. Berlin: Springer Series in Information Sciences, 1995.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部