期刊文献+

非等温流动问题的无网格CBS方法模拟

Characteristic Based Split Meshfree Method for Non-isothermal Flow Problems
下载PDF
导出
摘要 将特征线分步(Characteristic-based Split,CBS)法拓展到无网格方法中,提出了无网格CBS方法,并用其模拟了非等温流动问题.由于该方法采用了分步算法,所以能避开BB条件,使速度-压力采用等低阶基近似;另外由于在离散过程中采用了特征Galerkin(Characteristic Galerkin,CG)方法,其又能对对流占优问题起到很好的稳定作用,且不含任何依赖于网格的稳定化参数.最后,本文用其模拟了方腔自然对流问题,数值结果表明无网格CBS方法在求解非等温流动问题时能有效地消除对流占优引起的速度场、温度场振荡和速度与压力失耦现象,且具有很高的计算精度和较好的稳定性. The characteristic based split (CBS)method was extended into the meshfree method, namely the meshfree CBS method was proposed for the non-isotheral incompressible flow problem. First, because this method was based on the split method, it avoided the BB condition and allowed the equal order basis for the velocity and the pressure. On the other hand, because this method was also discretized by the characteristic Galerkin(CG) method, it eliminated the spurious oscillations when the convection was dominated. Moreover, this method was not involved the choice of stability parameters which was dependent on mesh. Finally, the natural convection in a square cavity was simulated and the numerical results show that the meshfree CBS method can overcome spurious oscillations of velocity and temperature when the convection is dominated;meanwhile it can also eliminate numerical instability due to the improper coupling of velocity and pressure. Additionally, it is also observed that this method has fair stability and good accuracy .
出处 《应用基础与工程科学学报》 EI CSCD 2011年第6期907-918,共12页 Journal of Basic Science and Engineering
基金 国家自然科学基金(10871159 11102101) 三峡大学科学基金(KJ2009B058)
关键词 CBS格式 无网格方法 自然对流 非等温不可压缩流动 CBS scheme meshfree method natural convection non-isothermal incompressible flow
  • 相关文献

参考文献10

  • 1Lewis R W,Nithiarasu P,soetharamu K N. Fundamentals of the finite element method for heat and fluid flow[ M]. England:John Wiley & Sons Ltd,2004.
  • 2刘百仓,黄社华,马军,陈文学,吴剑.二阶迎风有限体积法方腔流数值模拟[J].应用基础与工程科学学报,2006,14(4):557-565. 被引量:7
  • 3Liu G R, Gu Y T. An introduction to meshfree method and their programming[ M ]. Berlin:Springer,2005.
  • 4Huerta A,Vidal Y, Villon P. Pseudo-divergence-free element free Galerkin method for incompressible fluid flow [ J ]. Computer Methods in Applied Mechanics and Engineering,2004,193 ( 12-14 ) : 1119-1136.
  • 5Zienkiewicz O C, Taylor R L. The finite element method volume 3 : fluid dynamics ( 5th edition) [ M ]. Singapore: Elsevier Pte Ltd. 2004.
  • 6Wan D C, Patnaik B S V, Wei G W. A new bench mark quality solution for the buoyancy-driven cavity by discrete singular convolution[ J]. Numerical Heat Transfer, Part B,2001,40 (3) : 199-228.
  • 7Mayne D A, Usmani A S, Crapper M. h-adaptive finite dement solution of high Rayleigh number thermally driven cavity problem [ J ]. International Journal for Numerical Methods in Heat and Fluid Flow,2000,10 ( 6 ) :598-615.
  • 8Davis D De Vahl. Natural convection of air in a square cavity:A bench mark solution~ J]. International Journal for Numerical Methods in Fluids, 1983,3 ( 3 ) :249 -264.
  • 9代民果,高智.同位网格摄动有限体积格式求解浮力驱动方腔流[J].力学学报,2006,38(6):733-740. 被引量:8
  • 10Kuznik F, Vareilles J, Rusaouen G, et al. A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity [ J ]. International Journal of Heat and Fluid Flow,2007,28 (5) :862- 87O.

二级参考文献22

  • 1Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method [ J ]. J. Computational Physics, 1982,48:387 -411
  • 2Schreiber R, Keller H B. Driven cavity flows by efficient numerical techniques [ J ]. J. Computational Physics, 1983,49:310-333
  • 3Jun Z. Numerical simulation of 2D square driven cavity using fourth-order compact finite difference schemes [ J ].Computers and Mathematics with Applications,2003,45:43-52
  • 4Barragy E ,Carey G F. Stream function-vorticity driven cavity solution using p finite elements[J]. Computers & Fluids,1997,26:453-468
  • 5Sylvain B, Florent C, Jean-Marc H ,A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes[J]. Int, J. Therm. Sci. 2000,39:806-825
  • 6Jameson A,Baker TJ.Muligrid solution of the Euler equations for aircraft configurations.AIAA-84-0093,1984
  • 7Jameson A,Yoon S.Lower-upper implict schemes with multiplegrid for the Euler equations.AIAA J,1987,25(7):929~935
  • 8Liou M,Steffen CJ.A new flux splitting scheme.J Comp Phys,1993,107(1):23~39
  • 9Liou M.A sequel to AUSM:AUSM+.J Comp Phys,1996,129(2):364~382
  • 10Incropera FP,DeWitt DP.Fundamentals of Heat and Mass Transfer.4th ed.New York:Wiley,1996

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部