期刊文献+

相似邻居数目图像脉冲噪声滤波算法 被引量:4

Removal of impulse noise based on peer neighbor group
原文传递
导出
摘要 为了去除图像随机脉冲噪声的同时保留边缘,提出一种新方法。该方法首先利用图像局部灰度相似性来构造相似邻居数目图,一个像素的相似邻居数目在窗口内最大或数值较大,才可能认为是没有受到噪声干扰的像素。根据噪声密度不同采用不同方法检测。实验结果表明,阈值能适应性不同图像类型,滤波结果优于大部分已有算法,且算法复杂度低于大部分改进的中值滤波算法。 In this paper, a novel approach is proposed for removing and restoring random-valued impulse noise and preserving fine details at the same time. The impulse noise detection technique is presented,which is based on the so-called peer group concept. A pixel is noise-free only when its peer neighbor number is local maximum or large. Extensive simulations show that the proposed filter provides better performance than many of the existing filters and the computational complexity is lower than many of the median-based filters. In particular,the threshold is adaptive to different image types.
作者 单建华
出处 《中国图象图形学报》 CSCD 北大核心 2011年第12期2112-2116,共5页 Journal of Image and Graphics
基金 高等学校省级优秀青年人才基金项目(2010SQRL036ZD) 安徽省优秀青年科技基金项目(10040606Y23)
关键词 图像去噪 随机值脉冲噪声 噪声率 噪声检测 image denoising random-valued impulse noise noise ratio noise detection
  • 相关文献

参考文献1

二级参考文献5

  • 1Sun T, Neuvo Y. Detail-preserving median based filters in image processing [J]. Pattern Recognition Letters, 1994, 15(4) : 341 -347.
  • 2Wang Z, Zhang D. Progressive switching median filter for the removal of impulse noise from highly corrupted images [ J ]. IEEE Transactions on Circuits and Systems Ⅱ, 1999, 46( 1 ) : 78 -80.
  • 3Chen T, Ma K K, Chen L H. Tri-state median filter for image denoising [ J ]. IEEE Transactions on Image Processing, 1999, 8(12): 1834 -1838.
  • 4Xiao Xiao-kui, Li Shao-fa. Detail-preserving approach for impulse noise removal from images [ A ]. In : Proceedings of the IEEE Fourth Internahional Conference on Computer and Information Technology [C], Wuhan, China, 2004.
  • 5Gonzalez R C, Woods R E. Digital Image Processing (Second Edition) [ M ]. Englewood Cliffs, New Jersey, USA: Prentice Hall, 2002.

共引文献6

同被引文献25

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部