期刊文献+

图像光流联合驱动的变分光流计算新方法 被引量:8

New algorithm for estimation of variational optical flow with image-and flow-driven
原文传递
导出
摘要 提出一种基于图像光流联合驱动的变分光流计算方法。数据项采用灰度守恒和梯度守恒相结合、局部约束与全局约束结合的思想,并引入正则化因子提高计算精度。平滑项采用图像与光流联合驱动的各向异性平滑策略,将数据项与平滑项紧密地联系起来,并通过设计扩散张量的两个本征值来控制光流扩散速度。最后采用多分辨率分层细化策略解决大位移问题。实验结果证明,该计算模型在背景复杂、光照变化、运动边界等情况的光流计算具有很好的效果。 In this paper,a computation technology of variational optical flow based on Image-and Flow-driven is proposed. The idea to obtain the data term is to use the combination of gray and gradient constancy assumption,the combination of local and global constraint ,as well as the regularization factor,to improve the accuracy. A joint image-and flow-drive anisotropic smoothing strategy is introduced to design the smooth term,linking the data term and smooth term closely. And then ,the speed of the optical flow can be controled by the design of the eigenvalues of the diffusion tensor. Finally, the method utilizes the multi-scale hierarchical refinement strategy to handle large displacements problem. The experiment results prove that the model has a good computation effect of optical flow to cope with the problem of additive illumination changes and the boundaries of the moving objects with complicated backgrounds.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第12期2159-2168,共10页 Journal of Image and Graphics
基金 国家自然科学基金项目(60963003) 教育部科学技术研究重点课题基金项目(206080) 航空科学基金项目(08ZC56002) 江西省自然科学基金项目(2009GZS1109) 江西省国际合作基金项目(2060402108) 江西省教育厅科学技术研究基金项目(09018)
关键词 光流 变分法 正则化 图像光流驱动 扩散 optical flow variational method regularization image-and flow-driven diffusion
  • 相关文献

参考文献3

二级参考文献21

  • 1韩艳丽,王翌,杨樊.改进的图像相关匹配算法[J].海军航空工程学院学报,2007,22(3):337-339. 被引量:2
  • 2盖明久,吕世良,时宝.一种概率更新方法及在目标识别中的应用[J].海军航空工程学院学报,2006,21(5):598-600. 被引量:2
  • 3[2]HORN B K P,SCHUNK B G.Determining Optical Flow[J].Artificial Intelligence,1981,17(1-3):185-203.
  • 4[3]LUCAS B D,KANADE T.An iterative image registration technique with an application to stereo vision[C]//Proceedings of Imaging Understanding Workshop,1981:121-130.
  • 5[5]BARRON J L,FLEET D J,BEAUCHEMIN S S.Performance of Optical Flow Techniques[J].International Journal of Computer Vision,1994,12 (1):43-77.
  • 6[6]JONATHAN W B.Improved Accuracy in Gradient-based Optical Flow Estimation[J].International Journal of Computer Vision,1997,25(1):5-22.
  • 7Horn B K E Schunk B G. Determining Optical Flow[J]. Artificial Intelligence, 1981, 17(1-3):185-203.
  • 8Barron J L, Fleet D J, Beauchemin S S. Performance of Optical Flow Techniques[J]. IJCV, 1994, 12(1):43-77.
  • 9Verri A, Girosi E Torre V. Differential Techniques for Optical Flow[J]. Journal of the Optical Society of America, 1990,7(5):912-922.
  • 10Jonathan W B. Improved Accuracy in Gradient-based Optical Flow Estimation[J]. International Journal of Computer Vision, 1997, 25(1):5-22.

共引文献14

同被引文献105

  • 1段先华,王元全,王平安,夏德深.利用Gabor滤波的相位图像进行光流估计[J].计算机辅助设计与图形学学报,2005,17(10):2157-2161. 被引量:5
  • 2张力新,安会霞,林旻,邢占峰,曹玉珍.基于图像配准的CT定位像床板影校正[J].天津大学学报,2006,39(11):1375-1378. 被引量:2
  • 3BARRON J L,FLEET D J. Systems and experiment:Performance of optical flow techniques[J].International Journal of Computer Vision,1994,(01):43-77.
  • 4HORN B K P,SCHUNCK B G. Determining optical flow[J].Artificial Intelligence,1981.185-203.
  • 5LUCAS B D,KANADE T. An iterative image registration technique with an application to stereo vision[A].Vancouver,Canada,1981.674-679.
  • 6ANDREWS R J,LOVELL B C. Color optical flow[A].Brisbane,2003.135-139.
  • 7BROX T,BRUHN A,PAPENBERG N. High accuracy optic flow estimation based on a theory for warping[A].Berlin,2004.25-36.
  • 8NAGEL H H. Displacement vectors derived from secondorder intensity variations in Image sequence[J].Computer Graphics and Image Processing,1983.299-324.
  • 9ZIMMER H,BRUHN A,WEICKERT J. Optic flow in harmony[J].International Journal of Computer Vision,2011,(03):368-388.
  • 10DRULEA M,NEDEVSCHI S. Total variation regularization of local-global optical flow[A].Washington,D.C,2011.318-323.

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部