期刊文献+

改进符号压力函数的区域活动轮廓模型 被引量:8

Region-based active contour model improving the signed pressure force function
原文传递
导出
摘要 利用具有图像增强能力的局部区域信息,定义一种新的符号压力函数(SPF)。用该SPF函数取代GAC模型中的边界停止函数,对GAC模型进行改进,提出一种新的区域活动轮廓模型,从而解决了非同质或弱边界图像的分割问题。继续采用Selective Binary and Gaussian Filtering水平集方法,避免水平集函数的重新初始化,简化新模型。真实图像和合成图像的实验结果表明,新模型与LBF模型具有相同的分割效果,但在计算效率上远优于LBF模型。新模型不仅能够分割非同质或弱边界图像,且具有亚像素分割精确性、抗噪性、局部全局选择分割性等性质。 By using the local regional information which has the ability to enhance the image, a new SPF function has been defined. The edge stopping function in the GAC model is replaced by the SPF function, and a new region-based active contour model is put forward by improving the GAC model. Therefore, images with intensity inhomogeneities and weak boundaries can be processed. The Selective Binary and Gaussian Filtering Level Set (SBGFRLS) method is continuously used in the new model which is simplified by avoiding the process of reinitializing the level set function. Experiments on real and synthetic images indicate that the new model has the same segmentation results as the LBF model, while the computational efficiencies improve significantly. The new model not only can segment images with intensity inhomageneities and weak boundaries, but also has the properties such as sub-pixel accuracy, anti-noise nature, selective local or global segmentation, etc.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第12期2169-2174,共6页 Journal of Image and Graphics
基金 国家科技支撑计划项目(2008BAC34B03-4) 教育部数学 信息与行为重点实验室项目(LBB)
关键词 图像分割 活动轮廓模型 区域模型 SPF函数 水平集方法 非同质 image segmentation active contour model region-based model SPF function level set method intensity inhomogeneity
  • 相关文献

参考文献11

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [ J ]. International Journal of Computer Vision, 1988, 1(4) : 321-331.
  • 2Caselles V, Kimmel R, Sapiro G. Geodesic active contours [ J] International Journal of Computer Vision, 1997, 22( 1 ) : 61-79.
  • 3Li Chunming, Xu Chenyang, Gui Changfeng, et al. Level set evolution without re-initialization: a new variational formulation [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, California, USA : IEEE, 2005 : 430-436.
  • 4Zhu Guopu, Zhang Shuqun, Zeng Qingshuang, et al. Boundary- based image segmentation using binary level set method [ J 1. Optical Engineering, 2007, 46 (5) : 1-3.
  • 5Chan T F, Vese L A. Active contours without edges [ J ]. IEEE Transactions on Image Processing, 2001, 10(2) : 266-277.
  • 6Li Chunming, Kao Chiuyen, Gore J, et al. Implicit active contours driven by local binary fitting energy [ C]//Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. Minneapolis, MN, USA: IEEE, 2007 : 1-7.
  • 7Li Chunming, Kao Chiuyen, Gore J, et al. Minimization of region-scalable fitting energy for image segmentation [ J ]. IEEE Transactions on Image Processing, 2008, 17 (10) : 1940-1949.
  • 8Zhang K H, Song H H, Zhang L. Active contours driven by local image fitting energy [ J ]. Journal of Pattern Recognition, 2010, 43(4) : 1199-1206.
  • 9Zhang K H, Song H H, Zhang L. Active contours with selevtive local or global segmentation: a new formulation and level set method [ J ]. Journal of Image and Vision Computing, 2010, 28(4) : 668-676.
  • 10Vese L A, Chan T F. A multiphase level set framework for image segmentaton using the mumford-shah model [ J ]. International Journal of Computer Vision, 2002, 50(3) : 271-293.

同被引文献72

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部