期刊文献+

多方向线积分的梯度特征 被引量:1

Multi-directional integration of gradients
原文传递
导出
摘要 典型的梯度特征包括HOG(梯度方向直方图)、Shapelet及Edgelet等,这些特征被广泛用于目标检测、目标识别、图像检索及场景分类等领域。针对HOG特征运算复杂度高的问题,提出了一种新的多方向线积分的梯度特征(MDIG)。通过避免计算梯度方向并利用积分图,该特征简化了计算过程,提高了计算速度,因而便于在DSP等硬件上实现。实验中新特征被应用于人体头肩检测。实验结果表明当使用AdaBoost算法训练分类器时,该特征的描述能力与HOG相当,同时其计算时间仅为HOG的1/3,整体性能优于HOG。最后,针对梯度特征的适用范围对其未来应用的发展方向进行了讨论。 Representative algorithms for extracting gradient features include HOG (histogram of oriented gradients), Shapelet and Edgelet. They have been widely used in the fields of object detection, object recognition, image retrieval, and scene classification. A new feature named Multi-Directional Integration of Gradients (MDIG) is proposed after analyzing the HOG and its fast version. By avoiding computing the gradient orientation and using an integral image, the new feature is easier to extract and can be hardware implemented on a DSP. The MDIG is tested on images of human head-shoulders. Using AdaBoost to train a classifier, the result is comparable with HOG, while the computation burden is only one third of that of the HOG. Finally, the use of gradient feature is discussed, and the future work is summarized.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第12期2217-2222,共6页 Journal of Image and Graphics
基金 国家重点基础研究发展计划(973)基金项目(2007CB311004) 国家自然科学基金项目(61071135) 教育部博士点基金项目(20090002110077)
关键词 梯度特征 梯度方向直方图 多方向线积分 头肩检测 gradient feature HOG multi- directional integration head- shoulder detection
  • 相关文献

参考文献12

  • 1Freund Yoav, Schapire Robert E. A decision-theoreti1 generalization of on- line learning and an application to boostin1 [ J ]. Journal of Computer and System Sciences, 1997, 55 ( 1 ) t 119-139. /.
  • 2Friedman Jerome, Hastie Trevor, Tibshirani Robert. Additive logistic regression: A statistical view of boosting [ J ]. The Annals of Statistics, 2000, 28 (2) : 337-407.
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, CA: IEEE, 2005: 886-893.
  • 4Li M, Zhang Z, Huang K, et al. Estimating the number of people in crowded scenes by mid based foreground segmentation and head- shoulder detection [ C ]//Proceedings of International Conference on Pattern Recognition. Tampa, FL: IEEE, 2008 : 1-4.
  • 5Li M, Zhang Z, Huang K, et al. Rapid and robust human detection and tracking based on omega-shape features [ C ]// Proceedings of IEEE International Conference on Image Processing. Cairo: IEEE, 2009: 2545-2548.
  • 6Lin Z, Davis L. Shape-based human detection and segmentation via hierarchical part- template matching [ J ]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2010, 32 (4): 604-618.
  • 7Sabzmeydani P, Mori G. Detecting pedestrians by learning shapelet features [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007: 1-8.
  • 8Wu B, Nevatia R. Detection of muhiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors [ C ]//Proceedings of IEEE International Conference on Computer Vision. Beijing: IEEE, 2005: 90-97.
  • 9Wu B, Nevatia R. Tracking of multiple humans in meetings [ C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York, NY : IEEE, 2006 : 143-143.
  • 10Papageorgiou C, Poggio T. A trainable system for object detection [J]. International Journal of Computer Vision, 2000, 38 ( 1 ) : 15-33.

同被引文献16

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2DALAL N, TRIGGS B. Histograms of oriented gradients I'~~r hanlan detection [ C ]//Proc of IEEE Conference on Comi'~uter Vision and Pat- tern Recognition. 2005:886-893.
  • 3ZHU Qiang, AVIDAN S, YEH M C, e~ al. Fast human detection using a cascade of histograms of oriented gradients [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and [~ttern Recognition. 2006 : 1491 - 1498.
  • 4AN S T, KIM J J, LEE J W, el al. Fast Immall dcleclion using Gaussian particle swarm optimization [ C ]//Proc ~,1' the 5th IEEE In- ternational Conference on Digital Ecosystems and Tech.ologies. 201 I : 143- 146.
  • 5WANG Xiao-yu, HAN T X, YAN Shui-chertg. An HO(_,-I,BP hu,oan detector with partial occlusion handling[ C ]//l"roc of the 12th IEEE Interuational Conference on Computer Vision. 2009:32-39.
  • 6WATANABE T, IT() S, YOKOI K. Ca-occtn'rcnce histograms of ori- ented gradients fi*r pedestrian detection [ C ] //Proc of the 3rd Pacific Rim Symposium on Advances in Imag~-~ and Video Technology. 2008 : 37-47.
  • 7MU Ya-dong, YAN Shui-cheng, LIU Yi, et al. DiscriminalNe local hinah'y patterns tbr human deleetion in personal album[ C ]//Pn)c of IEEE Conference on Computer Vision and Pattern Ree~~gt'~itiou. 20(18 : 1-8.
  • 8CHEN Yu-ting, CHEN Chu-song. Fast human detection using a novel boosted cascading structure with meta stages[ J ]. IEEE Trans on Im- age Processing, 2008,17 ( 8 ) : 1452-1464.
  • 9CHANGE C C, LIN C J. LIBSVM:a library fi~r support vec/~r ma- chines [ EB/OL]. http://www, csie. ntu. edu. tw/- @in/libsvI~W.
  • 10NIT pedestrian data [ EB/OL ]. http://cbel, mit. edu/soi~ware-data- set~PedestrianData, html.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部