期刊文献+

几种矢量图像噪声去除变分模型的边缘保持比较(英文) 被引量:2

Comparison of the edge preservation capabilities of different variational models for vectorial image denoising
原文传递
导出
摘要 矢量图像噪声去除的变分模型必须考虑不同通道图像间的耦合以保持图像边缘,但所得到的模型复杂、计算效率低,且不同耦合方法对应的模型的边缘保持质量不同。本文首先设计了目前已经提出的这类变分模型的快速Split Bregman算法,然后通过大量数值实验对不同模型的边缘保持特性和计算效率进行了比较。所研究的模型分别使用LTV(layered total variation)规则项、MTV(multichannel total variation)规则项、CTV(color total variation)规则项、PA(polyakov action)规则项和RPA(reduced polyakov action)规则项。实验结果表明CTV模型对矢量图像去噪边缘保持最好,其他依次是PA模型、MTV模型、RPA模型和LTV模型;LTV模型计算效率最高,其他依次是MTV模型、RPA模型、CTV模型和PA模型。 Variational models for vectorial image denoising involve couplings of different channels to preserve edges, which lead to problems of complexity and efficiency. Meanwhile, different types of couplings result in different edge preserving effects. The objective of our work is to design fast Split-Bregman algorithms for a couple of variational models which have been proposed in recent years and compare their edge preserving properties and their efficiency. Five variational models for vectorial image denoising using different regularizers are studied: the LTV (layered total variation) regularizer, the MTV (multichannel total variation) regnlarizer, the CTV (color total variation) regularizer, the PA (polyakov action ) regularizer, and the RPA (reduced polyakov action) regularizer. The order of their edge preserving quality and computation efficiency are given based on numerical experiments. It is shown that the CTV model is the best method for edge preserving followed by the PA model, the MTV model, the RPA model, and the LTV model. The LTV model is the fastest model, followed by the MTV model, the RPA model, the CTV model, and the PA model.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第12期2223-2230,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61170106)
关键词 矢量图像 变分模型 边缘保持 图像去噪 Split—Bregman算法 vectorial images variational models edge preserving image denoising Split-Bregman algorithm
  • 相关文献

参考文献16

  • 1Rudin L, Osher S,Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60(1-4) :259-268.
  • 2Weickert J. Theoretical foundations of anisotropic diffusion in image processing [ J ]. Computing Supplement, 1996, 11 : 221- 236.
  • 3Sochen N, Kimmel R,Malladi R. A general framework for low level vision [J]. IEEE Transactions on Image Processing, Special Issue on PDE based Image Processing, 1998, 7(3) :310-318.
  • 4Sapiro G, Ringach D L. Anisotropic Diffusion of Multi-valued Images with Applications to Color Filtering [ J ]. IEEE Transactions on Image Processing, 1996, 5 ( l 1 )., 1582-1586.
  • 5Blomgren P, Chan T F. Color TV: Total variation methods for restoration of vector-valued images [ J ]. IEEE Trans. Image Processing, 1998, 7:304-309.
  • 6Aujol J F, Kang S H. Color Image Decomposition and Restoration [ J ]. Journal of Visual Communication and Image Representation, 2006: 17(4) : 916-928.
  • 7Yang J, Yin W, Zhang Y. A fast algorithm for edge-preserving variational multichannel image restoration [ J]. SIAM Journal on Imaging Sciences, 2009, 2(2) :569-592.
  • 8Bresson X, Chan T F. Fast dual minimization of the vectorial total variation norm and applications to color image processing [ J ]. Inverse Problems and Imaging, 2008, 2:455-484.
  • 9Duval V, Aujol J F,Vese L, A Projected Gradient Algorithm for Color Image Decomposition [ R/OL ] . [ 2011-04-03 ]. http :// hal. archives-ouvertes, fr/hal-00292898.
  • 10Brook A, Kimmel R, Sochen N. Variational restoration and edge detection for color images [ J ]. J. Math. Imaging Vision, 2003, 18 : 247 -268.

同被引文献23

  • 1Aubert G, Kornprobst P. Mathenlatieal plxllems in image proeessing: patlial differential equations and Ihe ealeulus of variations[ M ]. [ S. 1. ] :Springer, 2006: 147.
  • 2BeJlalmio M, Sapiro G, Caselles V, et el. Image inpaiming[ C ]// Proe of tile ACM SIGGRAPH. 2000: 417-424.
  • 3Betl.ahnio M, Bertozzi A, Sapiro G. Navier-stokes, fluid-dynamics, and image and video inpainting[ C ]//Proc of IEEE Computer Society Conference on Compuler Vision and Pattern Recognition. 2001 : 355- 362.
  • 4Chan T, Shen Jianhong. Mathematical models of local non-texture in- paintings[ J ]. SIAM Journal on Applied Mathematics, 2002, 62 (3): 1019-1043.
  • 5Chan T, Shen Jianhong. Non-lexiure inpainting by curvature-driven diffusions [ J ]. Journal of Visual Communication and Image Representation, 2001, 12(4) : 436-449.
  • 6Chart T, Kang S, Shen Jianhong. Euler's e]asliea and curvature-based image inpainting[J]. SIAM Journal on Applied Mathematics, 2002, 63(2) : 564-592.
  • 7Esedogla S, Shen Jimlhong. Digital inpaiating based oil tile Munfford- Shah-Euler image model[J]. European Journal of Applied Mathe- matics, 2002, 33(4) : 353-370.
  • 8Buades A, Coil B, Morel J. A review of image denoising algorithms, witl a new one[ J]. SIAM Multiscale Modeling and Simulation, 2005, 4(2) : 490-530.
  • 9Jung M, Bresson X, Chan T, et al. Nonlocal Mumford-Shah regulari- zers for color image restoralian [ J ]. IEEE Trans on Image Pro- cessing, 2011, 20(6): 1583-1598.
  • 10Gilboa G, Osher S. Nonlocal operators with applications to image pro_ cessing[J]. SIAM Multiscale Modeling and Simulation, 2008, 7 (3) : 1005-1028.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部