期刊文献+

基于时空关联块匹配的动态变形表面三维重建

3D reconstruction of dynamic deformable surface based on spatio-temporal patch matching
下载PDF
导出
摘要 静态物体三维重建已经得到广泛应用,但是动态变形物体的三维重建仍然存在问题.基于块匹配的思想,提出一种时空关联的动态变形表面三维重建的框架,将图像中一个物体表面划分成多个小块,独立处理每个块,用一个时空关联的优化函数进行块匹配.优化函数中,同时考虑了立体图像序列中四个对应的图像块.其中左、右图像块之间进行仿射变换,前、后图像块之间进行平移变换.模拟实验、实际数据实验以及与同类算法的比较,验证了该框架的有效性和可行性. 3D reconstruction of static object has been applied to many fields.However,3D reconstruction of dynamic deformable object is still tough to solve.This paper presents a novel framework for reconstructing dense 3D dynamic deformable surface with spatio-temporal coherence by patch matching with calibrated stereo image sequences.A surface can be divided into lots of small patches,and every patch can be dealt with independently.After dividing,the framework is implemented by a designed spatio-temporally coherent energy function.Simultaneously,four patches in stereo image sequence are taken into account.The performance and effectiveness are evaluated by simulated and real data experiments.
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2011年第5期470-473,共4页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(51008143) 江苏省汽车工程重点实验室开放基金资助项目(QC201005)
关键词 动态表面 时空关联 块匹配 三维重建 dynamic surface spatio-temporal patch matching 3D reconstruction
  • 相关文献

参考文献12

  • 1Salzmann M, Hartley, R, Fua P. Convex optimization fordeformable surface 3-d tracking [ C ]// Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: [ s. n. ] ,2007:69 -77.
  • 2Shen S, Zheng Y, Liu Y. Deformable surface stereo tracking-by-detection using second order cone program- ming [ C ]//Proceedings of 19th International Conference on Pattern Recognition ( ICPR 2008 ). Tampa, FL, USA : [s.n.], 2008: 1-4.
  • 3Sudhir G, Banerjee S, Biswas K, et al. Cooperative inte- gration of stereopsis and optic flow computation [ J ]. Jour- nal of the Optical Society of America, 1995, 12 ( 12 ), 2564 - 2572.
  • 4Huguet F, Devemay F. A variational method for scene flow estimation from stereo sequences [ C ]// Eleventh IEEE International Conference on Computer Vision (ICCV 2007). Rio de Janeiro, Brazil: [ s. n. ] ,2007:617 - 619.
  • 5Isard M, MacComlick J. Dense motion and disparity esti- mation via loopy belief propagation [ J ]. Computer Vision- ACCV, 2006:32-41.
  • 6Stoyanov D, Mylonas G, Deligianni F, Darzi A, et al. Softtissue motion tracking and structure estimation for ro- botic assisted mis procedures [ J ]. Lecture Notes in Com- puter Science ,2006:3750 - 3758.
  • 7Min D, Kim H, Sohn K. Edge-preserving joint motion- disparity estimation in stereo image sequences [ J ]. Signal Processing: Image Communication, 2007, 21 ( 3 ) :252 - 271.
  • 8Furukawa Y, Ponce J. Dense 3d motion capture from syn- chronized video streams [ J ]. Image and Geometry Process- ingfor 3-D Cinematography, 2010 : 193 - 211.
  • 9Lowe D. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004, 60 (2) :91 - 110.
  • 10Brox T, Bruhn A, Papenberg N, eta|. High accuracy optical flow estimation based on a theory for warping [ J ]. Computer Vision-ECCV, 2004,4:25 - 36.

二级参考文献12

  • 1王洪群,彭嘉雄,李玲玲.基于视觉的无人机着陆时机场标记的检测与识别[J].模式识别与人工智能,2006,19(6):764-770. 被引量:2
  • 2[1]RUSSO P,MARANDEY V,BUI T,et al.Optical flow techniquesfor moving target detection[C]//SPIE Proceedings,1990,1383:62-27.
  • 3[2]PARAGIOS N,DERICHE R.Geodesic active contours and level sets for the detection and tracking of moving objects[J].IEEE Trans.Pattern Anal.Machine Intell.,2000,22(3):266-280.
  • 4[4]CHAN T F,VESE L A.Image segmentation using level sets and the piecewise constant Mumford-Shah model[R].Technical report,UCLA Dept of Math.,CAM 00-14,2000.
  • 5[6]OSHER S,SETHIAN J A.Fronts propagating with curvature dependent speed:algorithms based on hamilton-jacobi formulation[J].Journal of Computational Physics,1988,79(1):12-49.
  • 6[7]CHAN T,WONG C K.Total variation blind deconvolution[J].IEEE Transactions on Image Processing.1998,7(3):370-375.
  • 7[8]SOCHEN N,KIMMEL R,MALLADI R.A general frameworkn for low level vision[J].IEEE Transactions on Image Processing.1998,7(3):310-318.
  • 8[9]CHAN T F,VESE L A.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 9[10]Guillermo Sapiro.Geometric Partial Differential Equations and Image Analysis[M].Cambridge University Press,2001.
  • 10[11]MANSOURI A R,SIRIVONG B,KONRAD J.Multiple motion segmentation with level sets[C]//Proc.SPIE Image Video Commun.Processing,2000:584-595.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部