期刊文献+

丘脑在舒芬太尼中枢镇痛中的作用 被引量:3

Role of Thalamus in Central Analgesia of Sufentanil: a Functional Magnetic Resonance Imaging Study
下载PDF
导出
摘要 目的探讨舒芬太尼的中枢镇痛机制。方法选择健康受试者17例(男8例,女9例),依次在基础阶段和靶控输注舒芬太尼(0.2 ng/ml)后行功能磁共振(fMRI)扫描。选取丘脑为感兴趣脑区,应用SPM软件对所有实验数据进行处理。结果靶控输注舒芬太尼后,与丘脑功能连接减弱的脑区包括双侧额叶直回、左侧额叶眶后回;与丘脑功能连接增强的脑区包括双侧小脑、右侧扣带回及左侧颞中回(P<0.001,cluster>13 mm3)。结论丘脑是舒芬太尼中枢镇痛机制中起到重要作用的脑区。额叶直回、左侧额叶眶后回、右侧扣带回、小脑及左侧颞中回与丘脑间功能连接的变化可能是舒芬太尼中枢镇痛机制中的重要组成部分。 Objective To explore the analgesic mechanisms of sufentanil.Methods 17(8 male,9 female) healthy right-handed volunteers received functional magnetic resonance imaging(fMRI) scan before and after sufentanil 0.2 ng/ml administration respectively.Thalamus was as the region of interest(ROI).All the processing works were carried out using the Statistical Parametric Mapping.Results Compared with the basic state,significantly weaker functional connectivity was mainly found in the region of bilateral rectal gyrus and the left inferia orbital gyrus of the frontal lobe,while significantly greater functional connectivity was found in bilateral cerebellum,the right cingulate gyrus and the left middle temporal gyrus(P0.001,cluster13 mm3).Conclusion Thalamus plays a key role in the central analgesia of sufentanil,which associated with the functional connectivity of bilateral rectal gyrus and the left inferia orbital gyrus of the frontal lobe,bilateral cerebellum,the right cingulate gyrus and the left middle temporal gyrus.
出处 《中国康复理论与实践》 CSCD 2011年第11期1035-1038,共4页 Chinese Journal of Rehabilitation Theory and Practice
基金 国家重点基础研究发展计划(973计划)(2007CB512503)
关键词 舒芬太尼 功能磁共振成像 功能连接 丘脑 sufentanil functional magnetic resonance imaging functional connectivity thalamus
  • 相关文献

参考文献21

  • 1Matthews PM, Jezzard P. Functional magnetic resonance imag- ing [J]. Neurol Neurosurg Psychiatry, 2004, 75: 6-12.
  • 2Biswal B, Yetkon FZ, Haughton VM, et al. Functional connec- tivity in the mortor cortex of resting human brain using Echo-planar MRI [J]. Magn Reson Med, 1995, 34(4): 537-541.
  • 3Malaspina D, Harkavy-friedman J, Corcoran C, et al. Resting neural activity distinguishes subgroups of schizophrenia pa- tients [J]. Biol Psychiatry, 2004, 56(12): 931-937.
  • 4Heinke W, Schwarzbauer C. In vivo imaging of anaesthetic ac- tion in humans: approaches with positron emission tomography and functional magnetic resonance imaging [J]. Br J Anaesth, 2002, 89: 112-122.
  • 5Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R, et al. Corti- cal and subcortical connectivity changes during decreasing lev- els of consciousness in humans: a functional magnetic reso- nance imaging study using propofol [J]. J Neurosci, 2010, 30 (27): 9095-9102.
  • 6Martuzzi R, Ramani R, Qiu M, et al. Functional connectivity and alterations in baseline brain state in humans [J]. Neuroim- age, 2010, 49(1): 823-834.
  • 7Antognini JF, Buonocore MH, Disbrow EA, et al. Isoflurane an- esthesia blunts cerebral responses to noxious and innocuous stimuli: a fMRI study [J]. Life Sci, 1997, 61: 349-354.
  • 8Heinke W, Koelsch S. The effects of anesthetics on brain activi- ty and cognitive function [J]. Curr Opin Anesth, 2005, 18(6): 625-631.
  • 9Hofbauer RK, Fiset P. Dose-dependent effects of propofol on the central processing of the thermal pain [J]. Anesthesiology, 2004, 100: 386-394.
  • 10Becerra L. Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitryin opioid-naive healthy volunteers [J]. Anesth Analg, 2006, 103: 208-216.

同被引文献52

  • 1Cunnington R,Windischberger C ,Deecke L,et al. The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response [ J ]. Neuroimage, 2003,20( 1 ) :404-412.
  • 2Bandettini P. Functional MRI today[ J]. Int J Psychophysio1,2007, 63(2) :138-145.
  • 3Djamali A, Sadowski EA, Muehrer R J, et al. BOLD-MRI assess- ment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction[J]. Am J Physiol Renal Physi- ol,2007,292 (2) :513-522.
  • 4Traeey I, Johns E. The pain matrix:reloaded or reborn as we image tonic pain using arterial spin labelling [ J ]. Pain, 2010,148 ( 3 ) : 359 -360.
  • 5Legrain V, Iannetti GD, Plaghki L, et al. The pain matrix reloaded : a salience detection system for the body[ J]. Prog Neurobiol,2011, 93(1) :111-124.
  • 6Cauda F, D'Agata F, Sacco K,et al. Altered resting state attentional networks in diabetic neurepathic pain[ J]. J Neurol Neurosurg Psy- chiatry,2010,81 (7) :806-811.
  • 7Raichle ME, Snyder AZ. A default mode of brain function : a brief history of an evolving idea [ J ]. Neureimage, 2007, 37 ( 4 ) : 1083-1090.
  • 8Balenzuela P, Chemomoretz A, Fraiman D, et al. Modular organiza- tion of brain resting state networks in chronic back pain patients[J]. Front Neuroinform,2010,4 : 116.
  • 9Moayedi M, Weissman-Fogel I, Crawley AP, et al. Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder [ J ]. Neureimage, 2011, 55 ( 1 ) :277-286.
  • 10Becerra L, Harter K, Gonzalez RG, et al. Functional magnetic reso- nance imaging measures of the effects of morphine on central nerv- ous system circuitry in opioid-naive healthy volunteers [ J ]. Anesth Analg,2006,103( 1 ) :208-216.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部